R

[/

Vision
Components

The smart camera people ...

Vision Components Software Documentation Version 5.0

© 2003 ... Vision Components GmbH, Ettlingen, Germany

August 2003

I Vision Components Software Documentation Version 5.0

Table of Contents

Foreword

1
Part | Introduction 3
Part Il General Information 6

Part Ill Tasks of the Operating System 8

Part IV VC/RT Resources 10
Part V The VC/RT Kernel 12

Part VI The Shell ("shell") 14

1 Description of the Shell Commands

Shell Command
Shell Command
Shell Command
Shell Command
Shell Command
Shell Command
Shell Command
Shell Command
Shell Command
Shell Command

Shell Command "

ht"

Shell Command "jI"

Shell Command "

Shell Command "jt"

Shell Command "
Shell Command "

Shell Command
Shell Command
Shell Command
Shell Command
Shell Command
Shell Command
Shell Command

lo"

{1011 0 S
B 112 1= SRR TTRT
TP e
Y DB it et et et e e e e e e e e e e e e e e e e e s e e s st e ees tes st e ees e e e
PVEI™ e e e e e
"vd" ...

o 0T) PSR
B st e et e e e e e e e et e e e
"dwn"
-

TEX" et e et et e e e s e
THE"

Part VII Supplied Utilities 30

TR o Yoo 1 1 o 1 1T 30

Important Key Combinations fOr PrOCOMM ... i v s v e vt e it e it e et et see st e svet e sees e sies e snes eeee s 30
Settings for Procomm ... e vt ve vt ce vt v e
Uploading and Downloading With PrOCOMIMot vt v e vt e st et e e et i see st e sees s eees e sies e sees eeee s DL

2 ECONV
3 ACONV

© 2003... Vision Components GmbH, Ettlingen, Germany

Contents Il

LT @1 TP 33
Diagram Of the ULHHTIESuoiiiic e e e et s ee e et e sr e e aane e 33
SIMERGE ... oottt ettt ettt ettt ettt ettt s £ r et e et e 34
71 2 RO RSPPPRS 34
L0 VCINIT. BAT oottt et ettt it e e et ettt s st e e e et ettt s s2 e e et e ettt se e e ee e e et s st ea st e e ee e e et e e et n e ee e 34

Part VIII The File System 37
1 Loading Programs to the FIash EPROM ..o 37

© 00 N o O b~

Part IX The Operating System Function
"exec" 40

Part X Auto Execution of Programs when
booting 43

Part Xl Descriptions of the Library
Functions 46

1 Overview of the Library FUNCLIONScou i 46

2 Memory AllOCAtioN FUNCLIONS ...ttt se e e 46

A o211 (U o TP TP P TPTRPNY” X - |
VEMAITOC .ottt et it et it et et et e et s et s et s s s et s e e st s st e bt eae sa e sa nas se eee see e sren nee seen eee seen s 4O
VCTTBE et et et et et et et et et et et et et s s s e e e e e e tea e e e e e sa e e e ses e sren see seen eee seen s B9
DI T e et et e et e e e e e et e e e b s b e eh st eh res shes ts ehes se sres st sten ts sren sres nen sees ten sees s DO
SYSMAIIOC ..t it e et e et et et ettt ettt e et eh sees caes s et s shes tes eaes ses saek st s sees s sres et sens ten tens ene sesene sesene s DO
S ST B et e e e e e s e s et s shes £es ehes s saek fees ek sees s sres et sens tes tees ene nesere seene s DL
SYSPITFIEE . et it et et e et ettt et et et et ehe e e s fheh et shes s ehes ses fhek Sets ek £ees s sres ek sets s tees eae se et nes tene s D2
DRAMPAGESAVAI ... oot i et i e e et vt et vt et st et et ehe ret et et eh see ehe et shes £s ehes ee shes st stes st saen st bt ses ten e D2
DRAMBYEESAVAI! i et i et i et i et et et vt et st et et e1 sttt et ea see ehe set shes £s ehes st shes £t sres £t sren st bt ses tes seee s D2
DRAMWOTASAVAIL oot i et i et e e et et st et st et et 1 rts et sts ehe see ehe seat shes £ae shes £t shes 2t stes st saes sres bt ses tes sees s DO
DRAMPGMAEIIOC . oot it i et i e e et et et st et e et et 1 rtt ca et eh see ehe seat shes £t shes £t ehes £ shes £t shes sres et tes s e DO
DRAMPAGEMAIIOC ... oot i et i e e et e et e et st et et 1 et ea et ea see ehe seat shes £s ehes ee shes s sres st shen st bt tes s e DO
DRAMBYLEMAIIOC ...t i et i e e it e et vt et st et et b ret et sts ea et ehe see stes tae eaes se sres sae stes tan sres sres ses ses sen seen s D
DRAMWOTAMAIIOCttt i et i e e i e et vt et st et et b vt ettt ca see ehe see saes tae eaes se shes sae stes tae sues sres ses ses sen sees s D
DRAMBYEEFIEE it it it it et e it et i e it et e it e e it ot e e et st seas sas bes st shs shes st sens sas saes sen sa sans s aes - D
DRAMWOTIAFTEE ...t it et e et et et et et et et st et sts et et b stt eh stat che see ehe seat shes £e shes £e shes £t stes st sues sres bt saes tes sees s DD
DRAMPGFIEEt e i it et e it et e e et ettt e et e e et s e e shes s feas sas s sees shs shes st sebs shs saes seb sh saes bes peas s DD
DRAMSCIEENMAIIOC ...t i et i e e et et et vt et et et et 1 et ca et ca see eae st shes £e ches se shes 2t stes st sres sres bt ses tes sees s DO
DRAMOVIMEIIOC ...ttt i et i e e et et et e et st e et b rtt eh stat eae see ehe seat shes £ae ehes te shes 2t stes st sres sres bt sres tes sees s DO

R LT T=T = U VL@ I L T[] 10 1 57

TO_TOPEIN e e et et et et e et et e et et et e et £t et e et £t ne seek £ek £ebe se Shek £es £ebs Shek £ek £eb She Shes £ek £eb 2he shes £ene sae saen pen ene s DO
(Lo T o] (o 1= I T O OO OSSO VTOPPOTP -1 o
TO_T@AA .. et e et et et et e et et et et ot et e es £t et e et £et Se seek £ek £eb Se seek £es £eb Shek £ek feb she shes £ek £eb she sees sene sue suen ben bene s DO
O _WEIEE e et et et et ettt e et et et et et et e es £t 2t e ses £ats sex seek £ak £ebs 1o shek £es £eb Shek £ek £eb sh shes bek £eb 2he sees bene sue sren ben pene s DO
TO_TOCEL e et e e et et et e et et et et ot et e et £t et e es £t e seek £ek £rbe se seek £es £eb Shes £es feb she shes £et £eb 2he sees £ene sue sien ben pene s DO
HO_FOBEC e it e et et et et e et et et et et et e et £t et e et £t e seek £k £eb se sees £es £eb shes £es £eb she shes set £eb sue sees sene sue suen sen sene s OO

© 2003 ... Vision Components GmbH, Ettlingen, Germany

Vision Components Software Documentation Version 5.0

TO_FPULC et et e et e e e et et et et et e et e et ehe et e i s fa Shes s Shs fhe sees ea Shes saes £es ches tes cane ben saes tes saes e s
TO_FSEEK . et et e et et e et e et e e e e e e et e e et e b e e fhe Sees ea Shes faes £es shes st caee s saes tes eaes e s

io_get_handle ...
4 Flash EPROM Functions

search
snext
fnaddr
fname
del
fremain
fcreat
flclose
exec
loadf

5 1/0 Functionsu.....

pstr
print
sprint
hextoi
SetRTS
resRTS

L= o Y
LIS T4 SR

outPLC
inPLC

6 DRAM Access Functions

rd20
wr20
rd32
wr32
rpix
wpix
blrdw
blwrw
blwrb
rovl
wovl
birdo
blwro
XOrpix
xorovl
birds
rdrlc

7 blrdb L

8 Functions for Processing of PiXel LiStSiuiiiiiiii i s s e e s e sn e

ad_calc
wp_list
wp_set
wp_xor
wo_set
wo_Xxor

© 2003... Vision Components GmbH, Ettlingen, Germany

Contents v

rp_list
wo_list
ro_list
9 Video CONLrOl FUNCLIONS .ooiviiiicice et ettt ettt ettt et et e et et e ve et e ee e ee st et ee e e e e e s

capture_request
vmode
tpict
tpp
tpstart
tpwait
tenable
trdy
shutter
SET_trig_lossy ...
SET_trig_sticky ..

10 RS232 (V24) Basic Functlons

rs232snd
L] o] £ To | PR P PRSP
L oL (Y=o | O OO
TOBIMIPLY .ot s et et et e et e et e et e et e et s et cres et ses ek sex bt oes feb sex hebe Ses b See Sh See Sh ree she ses shes £re shes es ehen ea
SEEDAUD ... o et e et et e et e et e e e e e e e e s e —hs ehe sees She Sees Sh Shes Shes £es Shes £es Shes £es shes £es shes £ees s sres et eees bn
kbready
11 Low Level EPROM Access Functlons .. 103
getf8
getfl6
getf32
erase

12 Utility Functions

getvar
setvar .
GOUIVAI ettt e et e et et e et e et et et e i e eh —aes eh Shes fa Sees She Shes Sh Shes fhek £t shes £es ehes ses shes £es shes seen s sres et e b
setlvar
GBESTPEE oot it ce et ettt e et et cht bt ch et et ehes b fehe et fhes Shes e ehe fes Shes b febe ek Shes Shes She febe fek Shes She febe feh shes shes she feae s shes eae
getdp
getbss .
13 LOOKUP Table FUNCLIONS ..ottt et et sttt st e e ere s 110
SEL_OVEIIAY DL ..o et et e e et e et it et et et et et et e e e e e e e e ees es es ere e een een een e neen eene see senn een eene s 110
SEE_IUL _COIMP i e et et et e et et et et et i eae ebes tes et shes ses seae sae sues ses feas eae 2aes es eas 2res nes ers sen een nes mees sene see senseenenne s DL L
SEE_IFANSIUCENT ..t et s e et e et et et et et ctes s et ches es eae eae saes ses seas eae eaes es ees 2re e ens sen een nes sees sene see senseeneene s DL L
SEE_OVIMASK ..o e et et et s et et et it et e cee ctes tes et shes tes eae sae saes ses feas eae eaes es es 2t e ees £en eens nes nees tene see sees een eene see D12

14 Time Related Funct|ons .. 113

o2 L 14 OSSPSR i I
o3 - L PSSR & I

© 2003 ... Vision Components GmbH, Ettlingen, Germany

Vision Components Software Documentation Version 5.0

c_timedate

Itime
Idate

.. 115
... 115
. 115

LA T 0 T=T o == OO PPRP: X o
OUIMIE ot et e e e e e et e et et eh et ea e eh e eh et shes fae sees s shes st saes sae sees sres ten sate ten sees sen sres sen sne ene eee 11O
GUAEE ot et e e e e e e et e et et e e ea e eh e eh e shes fae stes s shes s saes sae sees ses ten saee ses sees ses sres sen sne ene eee 11O
GUIMEAALE ... oot et i e e e e e et ettt 1 et e et e e b et saes tae saes eae shes sat saes sae sees sres sen saes sen sees sen eres sen sne seneeee LT
DG AL aT=To T L OSSPSR YRUPRUSPRPR: N A 4
XEIMEUALE ... ot ot et et et et et et et et et ctes et eae eaes es eae eae saes es eae 2t e ees £es £ees ses nees £es 2en sees £es eet sue sees ses sene see seen sene s 118

RTC

== S €10 L= O OO PPPRPUS i X

15 TCP/IP FUNCIIONS o oienitiei ettt et ettt e e e et se st e e s ee e se s et e s e e e s et e s s e e ee b s se e e e neea e nes 119

Datagram SOCKELS et et e s veet et et siet et eie cae saes tes et ehe eaes seae sae sues ses sene eae 2aen ses sene 2es e ese een sens nes neen een eens sensens 120
SEFEAM SOCKELS ... it it e e et et e e et et st et et et e rees et £ee sees £es £ete sb shes £et sebe sae sees £ene sue sees sen bens sne sren sen sene seennen 121

Comparison of Datagram and Stream Sockets

. 121

Creating and using Sockets .. et e e et s tree e nees ten ten saes ten eene see seet ten sene see seen sene see 122
Diagram: Creating and Using Datagram Sockets (UDP) et et e et fes eeee se nees tes eeae saes fes £ebe sae sees aen sene see seen sene see 12O
Diagram: Creating and Using Stream SOCKEtS (TCP)o oot et cier e et et et e et e e et e e e see e e sene e 124
Creating SOCKELS it et et et et et et et et et et e e et et e ee et e es £e £res ses ees £es 2en sees £es eete ses sees sen sens see seen sene see 12D
Changing SOCKEt OPLIONSc. e vet et e et et et e et et et e ee et se ees e eres e ees £es 2t sees ees 2ete ses sees ses sens see seen sene see 12D
Binding Sockets .. et et et e et fee fae nees fes fees ee Aees fes fees see AEek Sebs see 1Eek £ek Sebe see sees £es £ebe shen bek £ebe sbe sues sen sene see seen sene see 12D
USING DAtagram SOCKELS oo oot i s vt et e v et et et sees eet sets st stes oot sebe sae sees £en sae sees sen ben 2ee sben ben sene ses een 12D

Setting Datagram Socket Optlons e et e e e e e e re She e sae e se sres e sre nne sre nne sre nre eaes sres e nree s L 2D
Transferring Datagram Datal..o. coe cee ciet et et s vt et e st s teie cee seen tes bea stes tes sene sae saes ses sene sae sues sene ee enen s 128
BUFFEIING ... et et e e et e e e et e e et et e e et ettt sees et £et se sees £es £t se sees £ras sa sees £es see see sren bes sebe sres sen sene + L 2O
PreSCPECITYING B PEET ce i et et e et et et e et et et et et tete st seet et £t ses sees £ebe ses sees £es £ebs se shes bes feb shes bes bene s 127
Shutting Down Datagram SOCKELS et cot cen en et et e ee et ees e ee eae ses ees es eres ses ees ees eres ses sees eree sne seees LOT

Using Stream Sockets . e et e et et e nee seek fes feee Sheh fes febe She shes fes feb she saes fene she shen ben bene sne sren ben nene seesnes L2 T

Changing Stream Socket Optlons et et et ehe shes fehe she shen fes feae she shen bes bene shes bes bene sre shen nen sene sne snen ens ene enen s L2T
Establishing Stream Socket CONNECLIONS. c.c. ot ot ceet et et s vt et et e et e e sees ees sees see sten ses eeve sves veneene s D20
Passive EStabliSNING oo oot et i e et et e e et et e et et e e e e e s s e e een s e e neen eres e seee s 128
ACHVEESLADIISNING v cee et et et e et et et e et et et e et et e e e e e s s e e es s ere e en e nee neee s L 28
Getting Stream Socket Names 128
Sending Stream Data... et et et ek Sheh fek Eehe she Shen fen beae Shen ben bene she shes en heas sas ses es sn sae st neen ses sres nes nnen seee see neen s L 2O
send nowait (nonblocklng I/O) e e e et et e es tes e e ntes tes faes ses nees £ae see sees ses sen see sren ses sere sren nen sene 12O

RECEIVING SrEAM DALA... ..c. e et e e et et e e et et et et et eets ses seet ees 2rt se sees seas se sees ses sees see sren ses sete sren sen sene « 12O
BUFFEIING DALA... ... e it et e e et et e et et et st et et et sees £es £et se seet £et £t ses sees £ebe ses sees £es £ebs se shes bes £eb sres bes bene s 129
Improving the Throughput Of Stream Data... o cos cees et e v vt et s e et i e et s ere st sres s eeee sees sen eeee « 130
Shutting DOWN Stream SOCKELS. ce. er it et et e et et e et et et e e eae ees ees en eres sesees ees eres se seen weee see seee s 130
Shutting DOWN GraCefUllyo. o e et et e e et et e et et e eae eres s e sres tes sene sae sres ses sene eae 2nes sene ee enee s 130
Shutting Down with an abort OPEration... ot coe vt et es e e e e e e e eee s es sene eae ees ene ee enee s 230

Summary 0Of SOCKEL FUNCLIONS ...t s s et et s v et et e st et et st saes et eet sa sees sea sae sees sen bens see sren ben sene sees een L3

£ Lo o7 =T o | ORIV PRRORRTPP S 1 §
bind 133
[0 1T T I
ENET QO STALS ... oot e et it et et et et et et et et eete cae et cre sae tn sae eree cae eane san eene 2re sae tare san sene eee sene sen sene eree se eere + L OO
GEUPEEIMAIMIE.. ... ot e et e e e wres et e rees e sres e saes e shes sres e sees e shes e saes se shes sres e saes e sres e sren nee ses sren e neee s L OO

JEISOCKNAME coet it e e et et et stk et et sae stes et eeb she seet £ebe she sees £es £ebe se sees bes bens sben ben bene sue suen sen sene sue suen see ene snen s LOT
GOESOCKOPL e et et i v st et et seet et et see sees £et £eb she seet £eb she shes £es £ebe sh shen £es beb shen ben bene she shen sen sene sue suen sens ene enen s L3O
L1153 (= o T O S TP YRR R YRRTPRRTRRPRNS R< . |
=T O PSSP |0
recvfrom. .. e et e et fe e e ees fae st nees fas faee ne nees fas fees SEes £es £ebe she sees £ek £ebe see sees £ebe see nees sen sen nee sren ben sere sren nes sene LA2
VCRT_attachsock... et et et et ehe fhek fek fehe she shes fes beke Shes bes fens she shes bes bene she sues ens sas st e ens ees sres nes neen eeee nee neee s LAD

© 2003... Vision Components GmbH, Ettlingen, Germany

VCRT _AELACNSOCK ... c..t caen vt i et s et e et s et et et vt et s et e b et et et she see ehe seas eh seas shes se shes st sres sae cren s
RV 0T =] o ST TR

VCRT_selectall. ...

VW CRT _SEIECESEL cut e et it et i et e et s et e et e et s et e b et et et she see ehe set ehe et ches se ehes st sres te eaen s

send

sendto

setsockopt. ..

Option Names...

OPT_CHECKSUM_BYPASS..
OPT_CONNECT_TIMEOUT .. .
VCRT_SO_IGMP_ADD_MEMBERSHIP ..
VCRT_SO_IGMP_DROP_MEMBERSHIP .

OPT_KEEPALIVE..
OPT_MAXRTO...

OPT_RBSIZE.. .
VCRT_SO_LINK_RX 8021Q PRIO ..

OPT_RECEIVE_NOWAIT

OPT TBSIZE... .
VCRT_SO_LINK_TX 8021Q PRIO...
VCRT_SO_LINK_TX_8023..
OPT_SEND_NOWAIT ..
OPT_SEND_NOWAIT (StreamSOCket)

OPT_SEND_PUSH........cc i i e

OPT_SOCKET_TYPE...
OPT_TIMEWAIT_TIMEOUT ..

Example: Change Cecksum Bypass option to TRUE

SPULAOWIN .. ot s it et et et s e et et e e et et oe et et £t st seet £et £ebe saet 2ot £ebe sea sees £es £ebe se sben bene sb shen ben bene sae sren s
SOCKET SEIBAM... ..ttt it et e re et et et ce et et ee et £et £ets st seet £et £ebe saet 2ot £ebe sea sees £en £ebe se sben bene 2b shen ben sene sae sren s

socket_dgram....

Part Xl Prototypes, Include Files

Part XIlIl Memory Model of the VC20XX
Cameras

Part XIV Functional Principle of the
VC20XX Cameras

1 Block Diagram VC20XX CAMEIAScooeueruaiiiiaaanineetieeareeeen s eeeieeeeeaees

Part XV Organization of the DRAM

VI

144
145
.. 145
147
..148

.. 151
...154
.. 155
... 155
... 155
.. 156
VCRT_SO_IGMP_GET_MEMBERSHIP ... coscoes e e e oot eeet e e e e e eeee et eees e e e oot eeee e
OPT_RETRANSMISSION_TIMEOUT ... oot oo oot eere e e e e seee e eees e e e eet e eee e e e

157
157
..158

. et et et e oot et et et e et et et e s ot eeet et e 158
OPT_NO_NAGLE_ALGORITHM ..
...159
et et et e oot et et et et veet et eees et e e eeetsea . 15
VCRT_SO_LINK_RX_8023

..159

.160
..160
160
161
.. 161

... 162
. 162
... 162
OPT_SEND_NOWAIT (Datagram SOCKEL) cc et cuecirt cret e ettt cret et vt et eres e s et s s s s

.163
..163
163
..164

Example: Change send-push option t0 FALSEoci i vt s vt e et e et e e caes et vt et s e e
Example: Change receive nowait option t0 TRUE oot v it v et vt e e s e s et e e e

164
.165
..165
165
167
.. 167

169

171

© 2003 ... Vision Components GmbH, Ettlingen, Germany

VI Vision Components Software Documentation Version 5.0

Part XVI Organization of the Overlay DRAM 179
Part XVIlI Description of the File Structure 182
O =T o UL = oY [N T =T 182
B2 Y O 1 T 1 =TT 183
3 BiNAry Data File ...t e e s 183
4 JPEG DAa File ..o ettt e e e e et e et e et e e e e e e e e e e 184
LR = IO B =1 = N (| =TT 184
Part XVIII System Variables 186
1 Example: How to use Systems Variables ... 187
Part XIX C compiler 189
Part XX Useful Files 191
I o o T SRR 191
2 o o2 o - | TN 191
G T o o o] 1 [RS 193
A LArge PrOJECES oot oeiii oottt sttt e ee e e ee b e ettt et n s 193
Part XXI Description of the Example
Programs 197
T =75 O T 197
L1 0 X 2 197
Part XXIl List of VC/RT Functions 199
1 Memory AOCAtION FUNCLIONS ...ttt ettt ee s 199
2 Flash EPROM Fil@ FUNCLIONS ..uiiuiiiiiii et et et ettt ee e e it et e e et s s st s e e st e e s st s e st s e s aeen 200
I 1L @ I U] Yot A Lo Y 1SS 200
4 DRAM ACCESS FUNCLIONS oottt e et et et e e se st et e s e s e e e st e s e s ae e ee b e st e e e ee b nes 201
5 FUNCtions Processing PiXel LiStSoiiuiuuiiiiii ettt et 202
(SIRVATo [=TO o]] 4 o] I iU] 13 {0 o F= TR 202
7 RS232 BASIC FUNCIIONS vttt ettt ettt e e e et s st s s ea st e s et s e s e s e se s e s saeenes 203
8 Basic Flash EPROM ACCESS FUNCLIONS ...cuiiiiiieieceice et sttt er e s st s s s s s e e 203
L L 1] L =TT 204
10 LOOKUP Table FUNCHIONS ..ttt et ettt et e ee e e e e ee e s 204
11 Time Related FUNCLIONS .oooieniiiii e ettt et ee e e e se et e s e er e st e s s e e ee b e se e s e e eea e nes 205
Index 206

© 2003

... Vision Components GmbH, Ettlingen, Gemrmany

Foreword

This documentation was created very conscientiously. No liability is
assumed for possible errors or misleading descriptions. The information
contained in this documentation is informative and in no way guarantees
the characteristics of the product. The right is reserved to make technical

changes dictated by the state of the art.

© 2003 ... Vision Components GmbH, Ettlingen, Germany

Introduction 3

1 Introduction

Preleminary !l 0.71

Software Documentation

VC Series Machine Vision
Cameras

Operating System VC/RT
General Library Functions

Version 5.0x

Copyright Vision Components 2003

This documentation was created very conscientiously. No liability will be assumed for any errors or

© 2003 ... Vision Components GmbH, Ettlingen, Germany

Vision Components Software Documentation Version 5.0

misleading descriptions which it may contain. The statements made in this documentation are
informative in nature and not a guarantee of features. The right is reserved to make changes in the
interest of technical progress.

This documentation describes the VC/RT operating system software version 5.0x.

You can also consult the following documentation:

- Hardware documentation Hardware

- Documentation VCLIB Image Processing Library

Caution: VC/RT 5.0x only runs on VC-smart cameras with TMS32C62xx processor.

© 2003... Vision Components GmbH, Ettlingen, Germany

Vision Components Software Documentation Version 5.0

General Information

The VC Series cameras are compact, light-weight black-and-white or color video
cameras with video memory and a frame processor.

They integrate a high-resolution CCD sensor with a fast frame-processing signal
processor. A dynamic RAM is used to store data and video frames. Interfaces
allow communication with the outside world. The cameras set standards for
performance and integration density.

These cameras are built for industrial applications. High goals were set as
regards the frame resolution, the sturdiness of the casing, and the
electromagnetic compatibility, as mere examples. The cameras are insensitive to
vibrations and shocks, while permitting precise measurements and tests. They
are ideally suited as OEM cameras for mechanical engineering applications.

This documentation describes the cameras' software , especially the operating
system functions and general functions. However, in many cases the hardware
documentation is decisive. Special function libraries are also documented
separately. Please consult the corresponding manuals.

© 2003... Vision Components GmbH, Ettlingen, Germany

8 Vision Components Software Documentation Version 5.0

3 Tasks of the Operating System
The operating system VC/RT controls all of the camera's elementary functions. It
also provides the user with a command interpreter (the "shell") for easy user

access to all resources. It also supports the user in the debugging and test phase.

The following table compares the properties of VC/RT to those of other operating

systems

Property VC/RT MS-DOS 0S/9
Real-time capable yes no yes
Multitasking yes no yes
License one-time?*) per installation per installation

*) per developer workstation

© 2003... Vision Components GmbH, Ettlingen, Germany

10

Vision Components Software Documentation Version 5.0

VC/RT Resources

The main task of an operating system is to administer the processor's resources.
However, an operating system for a video camera must administer somewhat

"uncommon" resources:

Resource

Functions

CCD sensor

Picture taking and reproduction, various control functions

Frame output

Control of the display and overlay outputs

Flash EPROM Loading and saving files or programs, deleting sectors
multi-media card File access
SDRAM Accessing and managing memory, allocating and

releasing memory

RS232 interface

Data buffering and background I/O operations

Ethernet

Full Highspeed TCP/IP stack

Interrupts

Control of the various interrupt sources

There are library programs for most of the above operating system functions,
which interface to the user program (C program).

VC/RT consists of the following components:

- The kernel
- The shell

- Various routines which can be linked to the user program

© 2003... Vision Components GmbH, Ettlingen, Germany

12

Vision Components Software Documentation Version 5.0

The VC/RT Kernel

The kernel is located permanently at addresses 0xA0000000 through
OXAQO01FFFF in SDRAM.

It thus occupies 128 kBytes of memory. (The memory model is described in
Organization of the DRAM Ea)

The kernel consists of the following components:

e During power-up or reset, the loader loads the shell (flename: "shell"). The
continually resident routine "exec()" can be used to dynamically load programs
at any time.

o Interrupt-controlled routines for time management. Via an interrupt, all time-
related functions are controlled once per msec.

e Interrupt-controlled routines for all communication channels (serial or Ethernet).

o Interrupt-controlled routines for the PLC inputs/outputs. On any change of the
camera's inputs an interrupt is generated with which the status of the input lines
is copied to the PLCIN system variable. Other interrupts detect power failure
conditions

e DMA-controlled routines for taking and displaying pictures. Via DMA, all frame-
related display and capture functions are controlled. The update frequency of
the display refresh memory is programmable to once per each video frame or
any multiple of the frame rate.

e EDMA-controlled routines for multi-media card access

© 2003... Vision Components GmbH, Ettlingen, Germany

14

Vision Components Software Documentation Version 5.0

The Shell (“shell")

The shell is a program loaded by the loader. The shell communicates with the
user via the serial interface. (A PC with a communications program, such as
PROCOMM, is commonly used for this. PROCOMM is discussed below.)

As is common with most operating systems, commands can be entered (with or
without parameters) and are interpreted by the shell.

The shell itself contains a number of useful commands which can be executed
directly. A built-in help command (called by entering he) provides a quick
overview of these functions.

The shell also determines if entered commands are stored as a file on the flash
EPROM. (The command could also be a user program, for instance.)

In this case, the program is loaded, the command string is transferred and the
program is started. The shell is reloaded to main memory after the program
terminates.

In addition to being the user interface, which allows entering commands, loading
and executing programs, the shell provides the following features:

1. execution of batch files

any shell command or any available program name may be placed in an
ASClII-file which

may be executed simply by typing it's name.

example :

batch file commands comment (not part of the batch file)

bd 19200 set baudrate to 19200 bauds

#st execute self-test function (sector O
pr ogr an)

user pgl execut e user program userpgl

j1 ing di spl ay JPEG i mage ing

aut oexec execute batch file autoexec

Note: do not call batch files recursively

2. any shell command may be invoked by a running program simply as
parameter for
the program ,shell" (in-line mode)

example :
#i ncl ude <vcrt. h> argc=2 is the nunber of
argunments in the command |ine argv

© 2003... Vision Components GmbH, Ettlingen, Germany

The Shell ("shell")

15

void main(int d, int argc, char *argv)

{
exec("shel | ",2,"bd 19200");/* 2 paraneters = bd + 19200 */

remark: calling a batch file with exec is also possible

example:

#i ncl ude <vcrt. h>
void main(int d, int argc, char *argv)

{

exec("shell",1,"batch"); [* 1 paraneter =
bat ch */

3. The shell itself maybe called by a user program (e.g. to check memory
usage, change shutter settings, etc.). You may resume operation of the calling
program simply by typing 'ex'.

example:

#i ncl ude <vcrt. h>

void main(int d, int argc, char *argv)

{

ar gc=0; /* shell is called
wi t hout */

argv="\0"; /
par anet er */

exec("shell", argc, argv);

Note, that the command line buffer argv of the previous shell is used. This
saves

valuable memory space. Otherwise a command line buffer with 80 elements
char argc[80]

must be supplied on the stack or heap.

© 2003 ... Vision Components GmbH, Ettlingen, Germany

16 Vision Components Software Documentation Version 5.0

6.1 Description of the Shell Commands

The shell contains the following internal commands (in alphabetical order):
(bold writing indicates changes or new commands resp. older VCRT versions.

© 2003... Vision Components GmbH, Ettlingen, Germany

The Shell ("shell") 17
6.1.1 Shell Command "bd"
bd set baud rate for the serial interface
synopsis bd <baudrate>
description The baud rate for the serial interface can be
changed with bd.The parameter is a decimal
specifying the baudrate. Non-standard values
are also supported. The maximum baud rate
is 115200, the minimum value is 300.
Settings that cannot be changed are parity
(always: NONE), stop bit (always: 1) and data
bits (always: 8).
example: bd 19200
6.1.2 Shell Command "cd"
cd change path for working directory
synopsis cd <path>
description This command changes the path of the
working directory. A valid path consists of a
drivename (fd: or md:) and an optional
subdirectory structure.
examples
cd md:/my_directory/ selects directory "my_directory" on
multi-media card
cd fd: selects flash-EPROM
cd fd:/user/ selects flash-EPROM (user sectors)
cd fd:/sys/ selects flash-EPROM (system sectors)

6.1.3 Shell Command "cx"

cX
synopsis

description

change path for execution directory
cx <path>
This command changes the path of the

execution directory. A valid path consists of a
drivename (fd: or md:) and an optional

© 2003 ... Vision Components GmbH,

Ettlingen, Germany

18 Vision Components Software Documentation Version 5.0

subdirectory structure.

examples
cx md:/my_directory/ selects directory "my_directory” on
multi-media card
cx fd: selects flash-EPROM (user sectors)
cx fd:/user/ selects flash-EPROM (user sectors)
cx fd:/sys/ selects flash-EPROM (system sctrs.)

6.1.4 Shell Command "copy"

copy copy file
synopsis copy <sourcepath> [<destpath>]

description This command copies a file to a different
location. A valid path consists of a drivename
(fd: or md:), a subdirectory structure and a file-
name.
If the destination path is ommited, the current
directory is assumed.

ertewrt

examples

copy md:/my_directory/test.jpg copies test.jpg from directory "my_di
MMC to current data directory
copy fd:test.jpg md:/test.jpg copies file test.jpg from flash to MMC

6.1.5 Shell Command "del"

del delete file
synopsis del <path>
description A file can be deleted with the command del. A

valid path consists of a drivename (fd: or md:),
a subdirectory structure and a file-name.

For the Flash EPROM (fd:), the file itself stays
in the flash EPROM. It is only marked as
"deleted".

Note: A "deleted" file still takes up space in
flash memory.

This memory space can be used for other

© 2003... Vision Components GmbH, Ettlingen, Germany

The Shell ("shell")

purposes after reorganizing the complete file
system with the 'pk' (pack) command or after
erasing all files with the command er.

6.1.6 Shell Command "dir"

dir display directory of files
synopsis dir [<option>][<path>]
description The command dir creates a list of all files in the

directory. The directory path may either be
specified directly or indirectly using options. A
valid path consists of a drivename (fd: or md:)
and the subdirectory structure.

The following information is shown:

1. file name and extension

2. total length in bytes (decimal)

3. time and date of last write access (not
shown for fd:)

Calling dir without options lists all files in the
default directory chosen with cd

Options:
-X list system files (in sector 0) on fd:
-a list all files including deleted files
on fd:

6.1.7 Shell Command "dwn"

dwn download file to PC / flash EPROM
synopsis dwn <path>
description The command dwn sends a file in S-record

format to a host PC.
The command returns the following message:

please activate PC download function (e.g.
PgDn —key)

press ESC to abort or any other key to
continue

The user should then activate the download

19

© 2003 ... Vision Components GmbH, Ettlingen, Germany

20 Vision Components Software Documentation Version 5.0

function of the terminal program. For
PROCOMM this is done by pressing the PgDn
key. Enter the protocol (ASCII) and file name.
Sending an arbitrary character (like RETURN)
starts the sending procedure.

6.1.8 Shell Command "er"

er erase sector / flash EPROM
synopsis er
description The entire flash EPROM can be physically

erased (formatted) with the command er
(except for sector 0). It is first determined if the
affected sector is already empty. If so, this is
reported and the sector will not be erased.

It's not possible any more to erase indiviual
sectors from the shell. For compatibility

reasons, the function erase ﬁ() is still

available. Please use file based functions Eﬁ
instead

6.1.9 Shell Command "ex"

ex exit from shell
synopsis ex
description This command is used to return from a shell to

the calling program.

Simply type 'ex' and control will be passed to
the calling program.

If the shell has not been called by a user
program, ex has no effect.

The former paths of "cd" and "cx" are restored.

6.1.10 Shell Command "he"

he help command

synopsis he [<name>], or: ?, help

© 2003... Vision Components GmbH, Ettlingen, Germany

The Shell ("shell")

6.1.11

description

he without parameters displays a list of all
available commands.

If the name of a command from the list!s] is
included as a parameter, he displays the
syntax for the corresponding command.

Shell Command "ht"

ht
synopsis

description

hardware test
ht

The function ht tests the hardware and
displays a test screen. If an error*occurs during
the test, this will be reported.

ht performs the following individual tests:

l.processor test (mainly functionality of internal
registers, memory, etc.)

2.DRAM test

3. ID and serial number

4. file system

5.VC/RT version of files (incompatible files will
be deleted)

6. write a test pattern to image #0

Tests (1) through (5) are also executed on
power-up as a self-test.

If test (3) fails (e.g. due to manipulations of the
serial number) the system will be halted.

All other errors will be reported.

The test screen consists of the following test
areas:

image data memory
gray wedge
4 alignment markers

overlay

- image boundary (yellow)

- cross hair (green)

- 4 centered frames of different size (blue, red,
magenta)

- 1 circle for monitor adjustments (yellow)

21

© 2003 ... Vision Components GmbH, Ettlingen, Germany

22 Vision Components Software Documentation Version 5.0

- 4 translucent overlay areas (3 different colors
= yellow, cyan, magenta)
- text: "Vision Components"

6.1.12 Shell Command "jI"

jl jpeg load
synopsis jl <path>
description Entering jl <path> will load a previously stored

JPEG image file to the frame buffer.
example : jl fd:/mylogo.jpg

6.1.13 Shell Command "js"

js jpeg store
synopsis js <path>
description Entering js <path> will store the complete

image of the frame buffer (memory page 0) to
the JPEG file <path> on the flash eprom.

The quality factor for storing the image is 50%,
which means that a data reduction of 10 to 20
may be assumed.

example: js fd:/mylogo.jpg

6.1.14 Shell Command "jt"

jt jpeg transfer
synopsis jt
description Entering jt will transfer the complete image of

the frame buffer (memory page 0) to the V24 /
RS232 serial port, resp. to the telnet port (port
23) of an Ethernet camera. Every 1024
characters a character "A" is expected as an
acknowledge. Every other character will cause
a retransmit of the 1024 bytes. NO characters
will cause the system to hang.

The Graphic Shell has an image download
feature included.

© 2003... Vision Components GmbH, Ettlingen, Germany

The Shell ("shell")

On VC's Ethernet cameras you may use the ftp
feature to transafer a jpeg from and to the PC.

6.1.15 Shell Command "lo"

lo load S Records /flash EPROM
synopsis lo [<option>]
description Executable programs, ASCII files, binary data

files, JPEG files, etc. can be loaded from the
host computer (PC) to the flash EPROM with
the command lo.

This command is especially important when
developing programs.

The program first finds the next free memory
area in the flash EPROM, and the upload can
begin. (see also the corresponding description
of PROCOMM)

lo is usually called without option, which
defaults to "hex mode".

When the loading is done, lo will delete all
older files with the same name and type.

On Ethernet cameras ftp can be used instead

possible options -h hex mode (default) for use with
PROCOMM

6.1.16 Shell Command "mem"

mem display memory usage
synopsis mem [<option>]
description This command may be used to control the

memory usage of both the operating system
and user programs e.g. for debugging
purposes.

Entering mem without option will display the
usage of all memories.

Options: -t display 'text' memory segment usage
-S display 'stack’ memory segment usage
-d display 'data’ memory segment usage

© 2003 ... Vision Components GmbH, Ettlingen, Germany

24

Vision Components Software Documentation Version 5.0

-i display 'image’ memory segment usage
-f display flash memory usage

version 5.08 and earlier : not implemented yet

6.1.17 Shell Command "pk"

6.1.18

pk pack flash memory
synopsis pk
description The command pk physically purges deleted

files from the flash eprom file system.

The command allocates memory from DRAM,
copies files to DRAM memory, while discarding
deleted files, erases all previously used flash
eprom sectors and then writes back the files to
flash eprom.

Since the command may erase a large number
of sectors, execution may take from 5 to 30
seconds, so please be patient.

The command will fail, if there is not
enough DRAM available. This will happen if
DRAM memory was allocated by a program,
but not freed.

Shell Command "time"

time display system time

synopsis time [<option>]

description VC/RT for VC20xx features a real time clock

("RTC") with battery backup. GMT (Greenwich
Meantime) is stored internally, but any local
time may be output by entering timezone and
the daylight savings time flag.

Be sure to enter timezone and daylight saving
time flag before changing the time setting.

The battery used is rechargeable. If fully
loaded and temperatures are below 40 C it will
keep the RTC working for at least 14 days .
The RTC may function well for a much longer
period depending on temperature, initial
charge, battery age and device tolerances but

© 2003... Vision Components GmbH, Ettlingen, Germany

The Shell ("shell")

this cannot be guaranteed. In the case of
battery failure the time command will output:

| ow vol tage detected
clock data may be invalid

In this case the RTC must be set again.

The option "-x" displays the internal board
temperature (in degrees Celsius)

Options: -t display time
-d display date
-X display board temperature
-S set real time clock
-z set local timezone and daylight savings
time flag

timezones: GMT -11 Samoa
GMT -10 Hawaii
GMT -09 Alaska
GMT -08 USA Pacific
GMT -07 USA Mountain
GMT -06 USA Central
GMT -05 USA Eastern
GMT -04 Canada Atlantic
GMT -03 Brazil
GMT +00 Greenwich, London
GMT +01 Berlin, Stockholm, Rome, Paris,
Madrid
GMT +02 Athens, Helsinki, Instanbul, Israel
GMT +03 Kuwait, Moskau
GMT +04 Abu Dhabi
GMT +05 Islamabad
GMT +06 Dakka
GMT +07 Bangkok, Jakarta, Hanoi
GMT +08 Hongkong, Singapore
GMT +09 Tokio, Osaka, Seoul
GMT +10 Sydney
GMT +11 New Caledonia
GMT +12 Auckland, Wellington

examples : time
time and date command
temperature: 54.0 C
current timezone: +01

© 2003 ... Vision Components GmbH, Ettlingen, Germany

26

Vision Components Software Documentation Version 5.0

6.1.19

6.1.20

daylight savings time: ON
time: 14:55:20
date: 12/31/00

time -s

time and date command
current timezone: +01
daylight savings time: ON
time: 14:56:00

date: 12/31/00

input timezone +00 >+01

input daylight savings time

press 'SPACE' to change setting, 'ENTER' to
enter

daylight savings time ON

input date MM/DD/YY >12/31/00

input local time HH:MM:SS >14:56:00

Shell Command "tp"

tp take picture

synopsis tp

description The command tp takes a picture. The system

then switches to frame reproduction, to display
the frame stored in memory. (Note: When
powered up, the camera always shows the so-
called live-video from the CCD sensor)

The taken picture is stored in the memory area
specified with the command vd

Shell Command "type"

type type ASCII file

synopsis type <path>

description type lists ASCII files. The filename of the file to

be listed is specified as the parameter.

example An example of an ASCII file in the flash
EPROM is the command file "autoexec" which
is interpreted as soon as the camera is

© 2003... Vision Components GmbH, Ettlingen, Germany

The Shell ("shell")

powered up.

type fd:\autoexec

6.1.21 Shell Command "sh"

sh
synopsis

description

examples

set shutter value
sh <number>

The camera's electronic shutter is set with the
command sh.

The parameter is a decimal value in
microseconds. Please note, that not all shutter
values are allowed, depending on the camera
model.

Please refer to the camera's technical
documentation.

sh 1000 select 1 millisecond shutter time
sh 10000 select 10 milliseconds shutter time
sh 1000000 select 1 second shutter time

Since not all shutter values are available, the
command replies with the closest value which
could be set.

6.1.22 Shell Command "ver"

ver
synopsis

description

example

display VC/RT version
ver

This command displays the VC/RT operating
system version and release number.

ver
result:

print software version
Version 5.08

27

© 2003 ... Vision Components GmbH, Ettlingen, Germany

28 Vision Components Software Documentation Version 5.0

6.1.23 Shell Command "vd"

vd set video modes

synopsis vd [[<option>] <frame number>]
vd [-g <gain>]

description The video modes can be changed with vd.
There are the following options:

no option live mode/real frame

-l live mode/real frame

-d display memory contents
-g set gain

Live mode shows the image from the CCD
sensor. This mode is equivalent to the function
of a standard video camera.

Optionally, a page of the video memory can be
selected.

The number of video memory pages available
may vary, depending on the frame size camera
type and the memory size.

note: different from the VCxx cameras on the
VC20xx cameras live mode always stores
the image in memory.
This is valid esp. for vhode(0) .

© 2003... Vision Components GmbH, Ettlingen, Germany

30

Vision Components Software Documentation Version 5.0

7.1

7.1.1

7.1.2

Supplied Utilities

A series of PC utilities are included. They are described below.

Procomm

PROCOMM is a data communications program with terminal emulation. It is used
to communicate with the camera via the serial interface and to transfer data and
programs from a PC to the video camera (or vice versa). PROCOMM is a
shareware program (see the built-in copyright notice, which can be called by
pressing ALT I). It should be mentioned that a "professional" version is available
from retail stores. There are also a number of other products with similar
functions which may be usable.

Important Key Combinations for Procomm

PROCOMM has numerous options. Only the most important ones will be
described here.

The following key combinations are important when working with PROCOMM:

Enter Function Description
ALT-F10 Help all possible key combinations are
displayed
ALT-P Modem the baud rate and other transmission
Parameters parameters can be changed here
ALT-S Procomm Setup important settings can be changed here,

especially regarding the nature of the
emulated terminals and the transfer of
ASCI| data

ALT-X Exit PROCOMM is exited with this command

Settings for Procomm

The basic settings for PROCOMM are the selection of the baud rate and the port
for the PC serial interface.

Determine which PC port you will be using to communicate with the camera
(COM1:;, COM2:, etc.). Connect the camera's V24 cable to the 9-pin or 25-pin
plug of your PC's serial interface (COM1:, COM2:, etc., depending on the port you
choose).

You may have to solder an appropriate 9-pin or 25-pin plug, in accordance with
the pin assignments specified in the hardware description. Or you may have to
use a 9-to-25-pin plug adapter.

© 2003... Vision Components GmbH, Ettlingen, Germany

Supplied Utilities 31

7.1.3

Start PROCOMM (call: PROCOMM <ret>). Enter ALT P. You will see the menu
"COMMUNICATION PARAMETERS" for choosing a port and the baud rate. Use
the listed numbers to select the menu positions, until you see the desired setting
in the top line, "CURRENT SETTINGS". At the factory, the cameras are set to
9600 baud. So a correct setting might be as follows:

9600, N, 8, 1, cOw

The setting for the number of bits, the parity and the number of stop bits is fixed
and should not be changed

Nurmber of bits: 8
Nurmber of stop bits: 1
Parity: none

Only the PC port and the transmission rate can be changed. If you change the
transmission rate, you must first change this setting for the camera (command
bd).

After you have made the correct settings for PROCOMM and have saved them,
you can power up the camera.

The copyright messages for the loader and the shell must appear on the screen
NOWw.

If they do not, you may have configured the wrong port, the cable for the V24
interface may be defective or incorrectly soldered, or the camera is possibly not
powered up.

If random characters are displayed, the baud rate, parity or stop bits are probably
set incorrectly. Random characters can also result from incorrect soldering of the
V24 plug.

If the messages do appear on the PC screen, please hit <return> a few times to
check the link between the PC and the camera. The prompt ($) must appear each
time.

Uploading and Downloading with Procomm

In addition to sending and receiving characters, PROCOMM can send entire files
from the PC to the camera (uploading) or from the camera to the PC
(downloading). Uploading is especially important, in order to transfer programs
created at the PC to the camera.

The key "Page Up" activates the upload/download function.

The key "Page Down" activates the download function.

PROCOMM then queries you for the transmission protocol. Select ASCII protocol
(menu item 7) for both cases. Finally, PROCOMM queries you for the filename.

© 2003 ... Vision Components GmbH, Ettlingen, Germany

32

Vision Components Software Documentation Version 5.0

7.2

7.3

For uploads, this is usually the .MSF file to be sent to the camera. For downloads,
a file is created at the PC with this name. The received data will be stored in this
file.

Note: Uploading files using the lo-command requires handshaking. Using
XON/XOFF handshaking is recommended. (PROCOMM: ALT-S | 2) TERMINAL
SETUP | 3) Handshake ... XON/XOFF)

ECONV

The program ECONV converts the output of the linker (COFF-
compatible .out file) to a VCRT file.

The C source code is usually compiled and then linked with the linker. ECONV
then reads the .OUT file which has been created by the linker. Unlike the similar
CONVERT utility used for Analog Devices DSPs, ECONV only produces 1
module.

The module thus created is "wrapped" in a file structure. The resulting file needs
only be transferred to the camera. This file contains all relevant information for
the file system and the camera loader.

ECONV s called with a parameter.

This parameter is the filename to appear in the directory of the camera. It may be
at most 8 characters long.

Example:
ECONV pgni

ECONV uses fixed file names for the input and output files, namely "EXEC.OUT"
for the input file and "ADSP.OUT" for the output file.

ACONV

The function of ACONV is similar to that of CONVERT. However, ACONV works
with ASCII input files. Like CONVERT, ACONV has a parameter which specifies
the file name for the camera's directory.

With ACONV, the fixed name for the input file is "ASCIILINP". The output file is
named "ADSP.OUT".

Example :

ACONV textl

© 2003... Vision Components GmbH, Ettlingen, Germany

1.4

7.5

7.6

7.7

Supplied Utilities 33

BCONV

The function of BCONV is similar to that of ACONV. However, BCONV works with
BINARY input files. Like ACONV, BCONV has a parameter which specifies the
file name for the camera's directory.

With BCONV, the fixed name for the input file is "BINARY.DAT". The output file is
named "ADSP.OUT".

Example :
BCO\V dat 1

JCONV

The function of JCONV is similar to that of BCONV. JCONV uses a gray level
JPEG image as input. However, JCONV will produce an output file with filetype=3
(JPEG). Please note, that grey-value JPEG files are supported only.

With JCONV, the fixed name for the input file is "BINARY.DAT". The output file is
named "ADSP.OUT".

Example : JCOW ingl

SCVT

Before the files created with CONVERT or ACONV can be sent to the camera,
they must be converted to a so-called S-Record. The program SCVT is used for
this. In addition to the useful information, S Records contain check sums and load
addresses. Thus, transmission errors can be recognized immediately.

SCVT is called without parameters.

The input file is always named "ADSP.OUT", while the output file is named
"ADSP.MSF".

Diagram of the Utilities

ASCILINP
~__ACONV
T scvT

EXECOUT—_______ _ , ADSP.OUT. » ADSP.MSF
ECONV

BCONV

JCONV
BINARY.DAT

© 2003 ... Vision Components GmbH, Ettlingen, Germany

34

Vision Components Software Documentation Version 5.0

7.8

7.9

7.10

SMERGE

The program SMERGE makes it possible to merge two S-record format files
(.MSF files) as one file. Executing this program repeatedly allows the user to
create files from virtually any number of individual files.

A file created with SMERGE can be sent as usual via the serial interface to the
camera.

As always, the VC/RT files are in the camera after the upload. The command dir,
for example, can be entered to check for their presence.

The reason for this program is that at the PC, all camera programs can be
merged as a single file. This greatly simplifies the process of installing the camera
software.

Call syntax:

SMERGE filel file2 outputfile

filel and file2 are the two S-record files which are merged, outputfile is the
merged file.

outputfile must not be identical with either of the files filel or file2.

Example:

SMERGE pgmt. nsf pgnR. msf al | prog. nsf

S2B

This utility converts S-records to binary files. One application might be the
transfer of JPEG-files from the camera to the PC using S-records. S2B may then
be used to convert these data to a binary JPEG-file which may be viewed with
standard PC-programs.

S2B is called without parameters. The input file is always named "INPUT.MSF",
while the output file is named "OUT.DAT".

VCINIT.BAT

Before starting a development for the VC series cameras, the development
system must be configured for the particular camera model. The main differences
of the various camera models are as follows:

eresolution and type of the CCD sensor (interlace / progressive scan)
espeed / clock frequency of the processor

© 2003... Vision Components GmbH, Ettlingen, Germany

Supplied Utilities

35

esize (pagesize, number of pages), speed and access type (conventional /
pipelined) of the DRAM

esize (number of sectors), speed of the flash Eprom

The configuration is done using VCINIT.BAT

at the DOS command line you enter the following:

vcinit Xxxx
where xxx is the camera model you use

example:

C. VADSP\ 21 XX\ WORK>vCi nit - XXX

VCINIT.BAT copies a number of files, which are neccessary for the development
system:

NOTE : VCINIT is not available for VC/RT 4.0 yet.

Important Notice:

If you start developing for a different camera model, please be sure to use

VCINIT before, otherwise the compiled and linked program running on the
camera may "hang" when accessing memory, picture acquisition, etc.

© 2003 ... Vision Components GmbH, Ettlingen, Germany

8.1

The File System 37

The File System

The cameras have a FLASH EPROM which is used in a way similar to how hard
disks are used in larger computers.

Programs and data can be stored permanently here and can be reloaded at any
time.

In contrast to many operating systems for larger computers, there is only one
directory without subdirectories

Files are given a name, which can be up to 8 ASCIl characters. There is no
extension, but an equivalent designation can be made part of the name.
("prog.exe”, for instance, is a valid file name, while "progl.exe" is not, because it
includes more than 8 characters.)

The flash EPROM has 32 sectors of 64 KB each. Sector 0-5 are the boot sectors
with the operating system and some standard utilities. Sectors 0-5 are read-only.
They cannot be deleted, nor can the data be overwritten. (The reason for this is
that the camera could malfunction if parts of the operating system were to be
overwritten. The camera would have to be sent in for "repairs".)

The remaining 26 sectors (sectors 6 through 31) are for the user. All functions
(reading, deleting and writing) are possible here.

A special aspect of the flash EPROM is that a sector must first be deleted before
data can be written to it. The sector structure is irrelevant when data is written or
read. This means that files can be larger than one sector.

The VC20xx series of cameras except VC2028 also have a 16 Megabyte

Multimediacard (MMC) that can be used for program and data storage. Different
from the Flash Eprom, the MMC allows a directory tree, say subdirectories.

Paths of files on the flash EPROM start with "fd:/"
Paths of files on the MMC start with "md:/"

Files can be copied from one to the other storage medium by the copy command:

example :
copy fd:/test.exe nd:/test.exe

Loading Programs to the Flash EPROM

Programs are loaded with the shell command lo (load S-Record file).

After you enter the command (lo), the program waits for valid S Records. So at

© 2003 ... Vision Components GmbH, Ettlingen, Germany

38

Vision Components Software Documentation Version 5.0

this point, please do not make any inputs by hand but rather send an S record
file.

This is best done with the upload function of a communications program, such as
PROCOMM, TELIX, etc.

The S-Record file itself is created from the .EXE file of the Analog Devices
operating system, using the programs CONVERT and SCVT. The required file
structure is created during this process.

CONVERT is called, with the name of the file to be created as the parameter.

Example :

Input file: EXEC.OUT

Enter: ECONV myprog
Enter: SCVT
Upload: ADSP.MSF

At the camera, the program can then be called with the name "myprog".

It is NOT possible to load the program to other locations than the flash EPROM.
Say, a path "fd:/myprog" is implied.

If you want to copy a program to the MMC, first load it to the flash EPROM , then
copy it to the MMC with the copy command.

It is NOT possible to directly load a program into DRAM without storing it to the
Flash EPROM.

© 2003... Vision Components GmbH, Ettlingen, Germany

40

Vision Components Software Documentation Version 5.0

The Operating System Function "exec"

The operating system call exec () can be used to dynamically postload programs
from the flash EPROM or MMC to the processor's memory.

The program will only require a few milliseconds to postload, depending on its
size. Thus, this is suitable for real-time operations.

Parameters can be passed to the called program, like for C subroutines. When
the called program terminates, a return value is returned to the calling program,
as usual. After the called program terminates, the calling program is reloaded to
memory and processing continues where it was interrupted by the function call.
The entire procedure is quite similar to how C subroutines are called, which is an
aid to the user.

The following briefly lists the differences to subroutine techniques.

Dynamic postloading Subroutine techniques
The function itself is named Subroutine can be given any
"main()" name.

It is called by its filename Name identical when called

(=subroutine name)

Call the program with the Direct call by specifying the
function program name, e.g.
"exec (name,pl,p2,...pn); " "prog(p1,p2,...pn);"

pl,p2,...pn are the parameters

There are several small There is one large program, which
programs; each is linked only |must be linked with all required
with the subroutines it subroutines and library functions

requires, shortening linking time

Individual (sub-)programs can [The program must always be
be replaced quickly and easily, compiled and linked with the
e.g. for testing purposes subroutines

Postloading requires CPU time All subroutines are always
available immediately

Postloading is very recommendable if the program was structured for this and
each partial program contains different functions. For instance, a command
interpreter and the called commands could be organized this way.

This technique is possible, but not always recommendable, when the partial
programs mostly contain the same subroutines with few differences.

© 2003... Vision Components GmbH, Ettlingen, Germany

The Operating System Function "exec" 41

The following is a sample for a called program :

int main(int pl,int p2,...int pn)
{
}

pl,p2,...on are the parameters passed by exec

Note: Parameters pl, .. pn are restricted to 32bit values (e.g. int, int *, etc.)
"long" values (these are 40 bit !!l) are not supported. The maximum
number of parameters is 8

Programs are usually loaded starting at memory address 0xA0200000. All user
programs including the shell and all programs called by exec are loaded this way.

Advanced users may change the *.cmd file to load programs to a different
address.

Most programs use initialized variables (string constants, global variables and

statics).
These variables are initialized to a value which is precalculated at compile-time
each time the program is loaded (e.g. by exec).

The following rules must be obeyed

° loading of one program replaces
others (e.g. the shell) at the same
address

° global variables, statics and string

constants don't survive because
they are initialized every time loaded.

° The stack survives (i.e. local
variables) (Because not initialized).

° The vcmalloc-area survives
(Because not initialized).

° The DRAMmalloc area survives,
(Because not initialized).

° Flash eprom areas survive (Because

not initialized)

© 2003 ... Vision Components GmbH, Ettlingen, Germany

10

Auto Execution of Programs when booting

43

Auto Execution of Programs when booting

The cameras are used in industrial automation. Thus, at least the user program
must be executed automatically when booting (powering up).

The ASCII file "autoexec" can be used, like for PC systems. The commands and
programs it contains are interpreted by the shell one after another and executed
line by line. The file "autoexec" can be created on the development system (PC).
For this, the file "ASCIIL.INP" is edited. The conversion tools "ACONV" (enter the
command: "ACONV autoexec") and "SCVT" are used. Finally, the .MSF file thus
created is transferred to the camera's flash EPROM with the command lo.

The system boots as follows:

© 2003 ... Vision Components GmbH, Ettlingen, Germany

Vision Components Software Documentation Version 5.0

Power up
or soft
reset

}

Load and
execute L oader loaded
loader permanently

Load and
execute
shell

initialize & | execute
execute #init and #st

self-test
File -
autoexec yes |Waitfor no ESC
eXiStS? —— ESC e e——
character
got ESC
no signal
Execute
contents of
"autoexec"
< - I
v
output
copyright
message
Shell waits
fora
command
(%)

© 2003... Vision Components GmbH, Ettlingen, Germany

46

Vision Components Software Documentation Version 5.0

11

111

11.2

Descriptions of the Library Functions
If needed, the library functions described below can be linked to any C program.

Some of the functions have different versions for each camera model, others are
available only for a specific camera model.

Please make sure to use the appropriate configuration with the VCINIT batch
utility.

Overview of the Library Functions

memory allocation functions [a6]

flash eprom file functions E&

I/O functions @(RSZSZ, screen, PLC, Ethernet)
DRAM access functions Fﬁ

Functions for processing pixel lists [e2)

video control functions Eﬁ

rs232 functions |[203

flash eprom access functions 20

utilities [10d

TCP/IP functions |19

lookuptable functions 110
time related functions E?

Memory Allocation Functions

Allocation of memory is supported by a series of functions. For the heap space
the functions sysmalloc() and sysfree() may be used which very closely resemble
the original K & R routines malloc() and free(). The system memory allocation is
initialized on power-up. The functions vcmalloc() and sysfree() provided in earlier
versions of VC/RT are kept but are based on sysmalloc() and sysfree() using
macros.

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

47

vcsetup @

Initialize memory management

vcmalloc \495

user memory allocation

vcfree \495

user memory release

prtfree \Stﬁ

print a list of available user memory
segments

sysmalloc \505

system memory allocation

sysfree \515

system memory release

sysprtfree \55

print a list of available system memory
segments

For the allocation of DRAM memory space a very simple allocation scheme is
used. Clustersize for the allocation is one DRAM page (1024 or 2048 words
depending on the memory used). A pointer is used which points to the first
available DRAM page. Pages below this pointer are in use, pages above and
equal to DRAMPage are free. Allocating and releasing parts of the memory
means moving up and down the pointer. On power-up the system allocates
memory for one video and one overlay frame.

high address

low address

free
memory

<4— DRAMPage

used
memory

© 2003 ... Vision Components GmbH, Ettlingen, Germany

48 Vision Components Software Documentation Version 5.0

11.2.1 vcsetup

vcsetup Initialize memory management (macro)
synopsis void vcsetup(void)
description vcsetup () was used in previous versions of

VC/RT to initialize memory management. This
is however not necessary any more, since
the operating system takes care of the memory
initialisation on power-up.

This function has been maintained for reasons
of compatibility as a macro.

However: calling vcsetup() has no effect.

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.2.2 vcmalloc

vcmalloc
synopsis

description

see also

11.2.3 vcfree

vcfree
synopsis

description

user memory allocation (macro)
void *vcmalloc(unsigned int size)

vcmalloc() allocates heap memory in the
processor's data memory segment.

size is the size of the requested memory area
in words (int=32 bits).

This function returns a pointer to the allocated
memory area.

If the requested memory is not available as a
coherent block, the returned value is the null
pointer.

The heap is located in the data memory
segment , so the allocated memory areas can
be used as buffers for block transfers, e.g. for

the routines blrdw |71(), blrdb le1](), biwrw [771(),
etc.

vcmalloc ()is basically equivalent to the
function malloc (), which most systems provide
as a runtime library function.

However, the use of malloc() from the
runtime library of the cross-development
system by Texas Instruments is not
recommended.

vcfree @(), sysmalloc @()

user memory release (macro)
void vcfree(void *ptr)

The function vcfree() releases the memory
allocated by vcmalloc()for further use.

vcfree () is basically equivalent to the function
free (), which most systems provide as a

49

© 2003 ... Vision Components GmbH, Ettlingen, Germany

50

Vision Components Software Documentation Version 5.0

11.2.4

11.2.5

example

see also

prtfree

prtfree
synopsis

description

see also

sysmalloc

sysmalloc
synopsis

description

runtime library function.

However, the function free() from the
runtime library of the cross-development
system by Texas Instruments should not be

used.

#i ncl ude <vclib. h>

int *p;

p = (int *)vcmal |l oc(100);

bl rdb(50, p, OL);

vcfree(p);

vemalloc [#1(), sysmalloc [so]()

print a list of available user memory segments (macro)

void prtfree(void)

The function prtfree () outputs a list of the
available memory segments of the heap via
the serial interface, resp. Telnet (port 23 of the

Ethernet).

This can be a useful programming tool,
especially in the test phase.

vemalloc [#1(), vefree [#1(), sysprtfree [s21()

system memory allocation

void *sysmalloc(unsigned nwords, int type)

sysmalloc () allocates system memory in the
processor's SDRAM memory.

nwords is the size of the requested memory
area in words (int=32 bits).

This function returns a pointer to the allocated

memory area.

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

see also

11.2.6 sysfree

sysfree
synopsis

description

example

type is the type of memory requested. The
following tables gives an overview of the
various memory types.

51

type mnemonics usage

0 MTEXT program

1 MSTACK local variables, stack

2 MDATA global variables & heap
3 MIMAGE image data

The reason for this segmentation into 4
different memory spaces is that the DSP is
able to keep one page open for each of the 4
different segments. A copy e.g. from stack to
data space could then be performed at the
highest possible speed without unnecessary
page access cycles (RAS) for the memory. At
the same time the text segment could be
accessed for executable machine code.

sysmalloc () tries to return a pointer to the

requested type and size of memory. It is
allowed to return a pointer to a different
memory type in case the requested type has
not enough space. If the requested memory is
no longer available as a coherent block, then
the function will return the null pointer.

vcfree |#](), sysfree lsil()

system memory release

void sysfree(void *ap)

The function sysfree () releases the memory
allocated by sysmalloc()for further use by the

operating system.

#i ncl ude <vcrt. h>

int *p;

© 2003 ... Vision Components GmbH, Ettlingen, Germany

52

Vision Components Software Documentation Version 5.0

11.2.7

11.2.8

11.2.9

p = (int *)sysmall oc(1000, 2);
bl rdb(50, p, OL);

sysfree(p);

see also vcfree [#1(), sysmalloc [s01()

sysprtfree

sysprtfree print a list of available system memory segments

synopsis void sysprtfree(void)

description The function sysprtfree () outputs a list of the
available memory segments of all SDRAM
memory segments.
This can be a useful programming tool,
especially in the test phase.

see also sysmalloc Eﬁo, sysfree Eﬁ()

DRAMPagesAvail

DRAMPagesAvail number of available DRAM pages
synopsis int DRAMPagesAvail(void)

description DRAMPagesAvail () returns the number of
available DRAM pages of the DRAM
allocation system.
Note that the total number of DRAM pages
as well as the DRAM pagesize may differ for
the various camera models.

DRAMBYytesAvail
DRAMBYytesAvail number of available DRAM bytes

synopsis long DRAMBYtesAvail(void)

description DRAMBYytesAvail () returns the number of
available DRAM bytes of the DRAM allocation
system.

Note that the value returned is a multiple of the
number of bytes per page, since the memory is
allocated in units of one DRAM page.

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.2.10 DRAMWordsAvalil
DRAMWordsAvail number of available DRAM words

synopsis long DRAMWordsAvail(void)

description DRAMWordsAvail (returns the number of
available DRAM words (16 bits) of the DRAM

allocation system.

Note that the value returned is a multiple of the
number of words per page, Since the memory
is allocated in units of one DRAM page.

11.2.11 DRAMPgMalloc
DRAMPgMalloc allocate DRAM memory in units of a memory page
synopsis int DRAMPgMalloc(unsigned int count)
description DRAMPgMalloc () allocates count pages of
DRAM memory and returns the start page of

the allocated memory block.

If the memory size requested is not available,
the function will return -1.

11.2.12 DRAMPageMalloc

DRAMPageMalloc allocate DRAM memory in bytes, return start page of

block
synopsis int DRAMPageMalloc(unsigned long nbytes)
description DRAMPageMalloc ()allocates nbytes bytes of

DRAM memory and returns the start page of

the allocated memory block. Allocation is done

in units of the DRAM pagesize. If nbytes is not

a multiple of the pagesize, the number of
pages allocated is rounded up.

If the memory size requested is not available,
the function will return -1.

53

© 2003 ... Vision Components GmbH, Ettlingen, Germany

54 Vision Components Software Documentation Version 5.0

11.2.13 DRAMByteMalloc

DRAMByteMalloc allocate DRAM memory in bytes, return start byte-

address
synopsis long DRAMBYyteMalloc(unsigned long nbytes)
description DRAMByteMalloc ()allocates nbytes bytes of

DRAM memory and returns the start (byte)

address of the allocated memory block.
Allocation is done in units of the DRAM
pagesize (number of bytes per DRAM page). If
nbytes is not a multiple of the pagesize, the
number of pages allocated is rounded up.

If the memory size requested is not available,

the function will return -1L.

11.2.14 DRAMWordMalloc
DRAMWordMalloc allocate DRAM memory in words, return start byte-

address
synopsis long DRAMByteMalloc(unsigned long nwords)
description DRAMByteMalloc ()allocates nwords words

(32 nit each) of DRAM memory and returns the
start (word) address of the allocated memory
block. Allocation is done in units of the DRAM
pagesize (number of bytes per DRAM page). If
nwords is not a multiple of the pagesize, the
number of pages allocated is rounded up.

If the memory size requested is not available,
the function will return -1L.

11.2.15 DRAMBYyteFree

DRAMBYyteFree return memory block to DRAM allocation system (byte-

address)
synopsis void DRAMBYyteFree(long startbyte)
description The function DRAMBYyteFree ()is used for

returning unused DRAM memory blocks to the
DRAM memory allocation system. The

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.2.16 DRAMWordFree

DRAMWordFree
address)

synopsis

description

11.2.17 DRAMPgFree

DRAMPgFree
address)

synopsis

description

55

startbyte address of the block is simply passed
to the function.

Note, that there is always a coherent block of
memory being used directly underneath the
(coherent) free memory area.

This means, that itis only possible to return the
last recently allocated memory block. If
DRAMBYyteFree() is called with an address of a
memory block allocated earlier, it will free all
memory blocks which have been allocated in
the meantime down to this very address.

return memory block to DRAM allocation system (word-

void DRAMWordFree(long startword)

The function DRAMWordFree ()is used for
returning unused DRAM memory blocks to the
DRAM memory allocation system. The
startword address of the block is simply
passed to the function.

Note, that there is always a coherent block of
memory being used directly underneath the
(coherent) free memory area.

This means, that itis only possible to return the
last recently allocated memory block. If
DRAMWordFree() is called with an address of
a memory block allocated earlier, it will free all
memory blocks which have been allocated in
the meantime down to this very address.

return memory block to DRAM allocation system (page-

void DRAMPgFree(int startpage)

The function DRAMPgFree () is used for
returning unused DRAM memory blocks to the
DRAM memory allocation system. The

startpage of the block is passed to the
function.

© 2003 ... Vision Components GmbH, Ettlingen, Germany

56 Vision Components Software Documentation Version 5.0

Note, that there is always a coherent block of
memory being used directly underneath the
(coherent) free memory area.

This means, that it is only possible to return the
last recently allocated memory block. If
DRAMPgFree() is called with the startpage of a
memory block allocated earlier, it will free all
memory blocks which have been allocated in
the meantime down to this very address.

11.2.18 DRAMScreenMalloc

DRAMScreenMalloc allocate DRAM memory for full screen storage
synopsis int DRAMScreenMalloc(void)
description The function DRAMScreenMalloc ()allocates

DRAM memory for one screen of video
display. It returns the start page of the
allocated memory block. This start page
may conveniently be used to instruct the video
controller to display the memory area on the
video monitor.

example
i nt newpage;
newpage=DRAMScr eenMal l oc(); /* allocate
nenory */
set var (st page, newpage); [/* display new

menory area*/

11.2.19 DRAMOvIMalloc

DRAMOvIMalloc allocate DRAM memory for full screen overlay storage
synopsis int DRAMOvIMalloc(void)

description The function DRAMOvIMalloc ()allocates
DRAM memory for one screen of video overlay
display. It returns the start page of the
allocated memory block. This start page may
conveniently be used to instruct the video
controller to display the corresponding overlay
memory area on the video monitor.

example
i nt newpage;

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 57

11.3

newpage=DRAMOvI| Mal | oc(); /* allocate
nmenory */

set var (ovpage, nevvpage) /* display new
overlay area */

General I/0O Functions

Files and I/O devices are accessed by means of generalized 1/O functions. This is
a new feature for VC/RT 5.0x with respect to earlier versions.

We strongly recommend the use of these functions instead of direct
functions (like search, fnaddr, etc.). The latter will be kept for a while for
compatibility purposes.

The following functions are available:

io_fopen Ei open a device, get file pointer

io_fclose |=] close device

io_read |so] read from device

io_write B write to device

io_ioctl Ey control function

io_fgetc c | ool get character from device

io_fputc [eo] put character to device

io_fseek [e1] set file position

io_get_handle l61) get a pointer to the default standard I/O stream

The standard procedure for file operations is as follows:
i o_fopen()
/[* ... one or nore file operations ... */

i o fclose()

The operation io0_fopen () locks a file for access from other tasks depending on
the access mode and allocates some buffers for that file.

io_fclose () frees the memory used and unlocks the file so that it may be used
subsequently by another task. For this reason we recommend using the function
io_fclose () immediately when access to the file is no longer necessary.

The following restrictions apply:

© 2003 ... Vision Components GmbH, Ettlingen, Germany

58 Vision Components Software Documentation Version 5.0

Drive |Access Mode (Operation
fd: Read Unlimited number of read accesses to
same file
Write Access to only 1 file in total
md: Read Unlimited number of read accesses to
same file
Write Access to file is locked for other tasks

For special /O operations the function io_ioctl () may be used. Here, a

drivename, path or file must be opened with io_fopen () and mode="c". Then the
io_ioctl () is performed. Finally the function io_fclose () must be called.

11.3.1 io_fopen

io_fopen open a device, get file pointer
synopsis FILE *io_fopen(char *path, char *mode)
description The function io_fopen () opens a device /file /

directory with the pathname given by path.

It returns the filepointer if successful or NULL if
not.

It is possible to open the device with the
following mode-strings:

mode = " read
"w" write
"c" control
"a" append
11.3.2 io_fclose
io_fclose close a device
synopsis int io_fclose(FILE *fp)
description The function io_fclose () closes a device / file /

directory previously opened with io_fopen [s6].
The function returns O for successful operation
or otherwise an error number, which depends
on the driver for the selected device.

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.3.3

11.3.4

11.3.5

io_read
io_read
synopsis

description

i0_write
io_write
synopsis

description

io_ioctl

io_ioctl

synopsis

description

read from device
int io_read(FILE *fp, char *buf, int cnt)

The function io_read () reads from a device /
file previously opened with io_fopen [s8].

cnt is the number of bytes,

buf is a pointer to a buffer to store the data.

The return value of the function is the number
of bytes transferred if successful or else -1.

write to device
int io_write(FILE *fp, char *buf, int cnt)

The function io_write () writes to a device / file
previously opened with with io_fopen [s6].

cnt is the number of bytes, buf is a pointer to a
buffer of data to be written.

The return value of the function is the number

of bytes transferred if successful or else -1.

I/0 control

int io_ioctl(FILE *fp, unsigned cmd, void
*param)

The function io_ioctl () is used for various
device control functions.

cmd is a command code to request a certain
function, param is a pointer to a variable or
struct, where information may be passed from
the calling routine to the function or vice versa.

Here is a list of available functions

59

© 2003 ... Vision Components GmbH, Ettlingen, Germany

60

Vision Components Software Documentation Version 5.0

11.3.6

11.3.7

io_fgetc
io_fgetc
synopsis

description

io_fputc

io_fputc
synopsis

description

device cmd function param

STDIN |O_BAUD_SET set baud rate &baud
I0_ BAUD_GET et baud rate &baud
IO_RTS_SET set RTS to 1 NULL
IO_RTS_CLR set RTS to 0 NULL

fd: I0_PACK pack &result
I0_ERASE erase &result
I0_READDIR read directory READDIR
I0_CHKSYS check system NULL
I0_DEL delete file NULL

md: 10_PACK pack directory NULL
I0_READDIR read directory READDIR
I0_DEL delete file NULL
I0_MKDIR make directory NULL

get character from device

int io_fgetc(FILE *fp)

The function io_fgetc () inputs a character from

the device fp. If an End-Of-File condition is
encountered, -1 is output instead of a

character

output character to device

int io_fputc(int c, FILE *fp)

The function io_fputc () outputs a character to
the device fp.

The return value of the function is equal to the
character c written or a negative error

condition.

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.3.8 io_fseek

io_fseek set the file position

synopsis int io_fseek(FILE *fp, int offset, unsigned
start_from)

description The function io_fseek () positions the read-
filepointer to the position specified with offset.

On success the function returns O.

The following values are possible for

start_from:
IO_SEEK_SET offset
I0_SEEK_CUR current_position + offset
I0_SEEK_END file_size + offset
11.3.9 io_get _handle

io_get_handle get a pointer to the default standard 1/O
stream

synopsis FILE *io_get_handle(unsigned stdio_type)

description The function io_get handle () returns a pointer

to the default standard I/O stream.

If unsuccessful, NULL is returned.

stdio_type may be any of the following values:
IO_STDIN

IO_STDOUT
IO_STDERR

11.4 Flash EPROM Functions

Since version 5.0x the functions below are replaced by
general 1/0O functions [s7] that are file based. We strongly recommend to use
those.

© 2003 ... Vision Components GmbH, Ettlingen, Germany

62 Vision Components Software Documentation Version 5.0

Some of the functions below are still available for compatibility reasons but may
not be available in future versions.

The camera's flash eprom is used quite similar to a harddisk on a PC. Data is
stored, too, in files. For the exact file structure, refer to appendix D. User files
always start with flash eprom sector 1. A new file is always written right behind

the last file in the file system. The file structure contains the file length, therefore a
search will start at the beginning of sector 1 and parse through all files (jumping at
the start of each file only) until the either the file or the end of the file system is
found. Low level functions for accessing the flash eprom are discussed in chapter
10.9

search le2] search for a file

snext |es] search for the next free area/flash EPROM

fnaddr |es] lsearch for the start address of the next file/flash
EPROM

fname |e4] |get name and type of a file/flash EPROM

del[e4) delete a file

fremain |es] remaining flash eprom space

fcreat \65? create a flash EPROM file
fclose \eaﬁ close a flash EPROM file

exec lss] load and execute a program from the flash
EPROM
loadf [ss] oad program from flash EPROM

11.4.1 search

search search for a file/flash EPROM
synopsis | ong search(int ft, char *fnane)
description The function sear ch() looks in the flash EPROM for the file

named "fname"
of type "ft".

The return value is the start address of the file found.
If the file is not found, the function will return OL.
"ft" can have the following values:

0 = executable, i.e. a program in standard COFF-format
1 = ASCIl, i.e., a pure text file

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 63

2 = DATA, i.e. binary data file
3 = JPEG image file
-1: search() will search for the file with the specified
name of
any file type

The function sear ch() looks through the entre EPROM not

byte for byte
but rather uses the file structure, which is much faster.
see also f naddr ()

Since version 5.0x the functions below are replaced by
general 1/O functions |s7] that are file based. We strongly recommend to use

those.
11.4.2 snext

snext search for the next free area/flash EPROM

synopsis long snext(void)

description The function snext() looks for the next free
area in the flash EPROM.
The return value is the address of this free
area.
Files can be stored from this start address to
the end of the flash EPROM.

see also fnaddr @()

Since version 5.0x the functions below are replaced by
general I/O functions sl that are file based. We strongly recommend to use
those.

11.4.3 fnaddr

fnaddr search for the start address of the next
file/flash EPROM

synopsis long fnaddr(long addr)
description The function fnaddr() calculates the start

address of the next file in the flash EPROM.
The start address of a file is entered as addr.

© 2003 ... Vision Components GmbH, Ettlingen, Germany

64 Vision Components Software Documentation Version 5.0

The function then returns the address of the
next file or free area.

This function returns OL if a file header could
not be found for the specified address. In
particular, this is the case when addr points to
a free area.

see also fname [e4] 0

Since version 5.0x the functions below are replaced by
general 1/O functions 571 that are file based. We strongly recommend to use

those.
11.4.4 fname

fname get name and type of a file/flash EPROM

synopsis int fnrame(long addr, char *name)

description The function fname() gets the name and type
of the file in the flash EPROM stored at
address addr. The start address of a file is
entered as addr. The function then returns the
file type; the file name is stored in the string
name by the function.

see also fnaddr Eﬁ()

Since version 5.0x the functions below are replaced by
general I/O functions |s7] that are file based. We strongly recommend to use

those.
11.4.5 del

del delete a file/flash EPROM

synopsis int del(int ft, char *fname)

description The function del() deletes the file specified by
ft (file type) and fname (file name). If ft=-1 the
function will delete any file matching fname
only.

see also erase @()

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

65

Since version 5.0x the functions below are replaced by
general I/O functions sl that are file based. We strongly recommend to use
those.

11.4.6 fremain

fremain remaining flash EPROM space
synopsis long fremain(void)
description The function fremain() returns the remaining

flash EPROM space in bytes.

Since version 5.0x the functions below are replaced by
general I/O functions sl that are file based. We strongly recommend to use
those.

11.4.7 fcreat

fcreat create a flash EPROM file
synopsis void fcreat(long fp, char *name, int type)
description The function fcreat() creates a flash EPROM

file by writing the file-header

to address fp which should have been
allocated before with the snext()

function. The file may then subsequently be
written to.

Finally it must be closed using fl cl oseﬁfﬁ() :

Do not execute any other file operations like
search@() before
the flash eprom file is closed

Since version 5.0x the functions below are replaced by
general I/O functions sl that are file based. We strongly recommend to use
those.

© 2003 ... Vision Components GmbH, Ettlingen, Germany

66 Vision Components Software Documentation Version 5.0

11.4.8 flclose
flclose close a flash EPROM file
synopsis void flclose(long fp, long length)
description The function flclose() closes a flash eprom file
previously created by
fcreat().

The function must be supplied with the number

of bytes written to the file.
From this, it calculates the end of the file and

writes the file trailer.

Note: Do not leave any files open

Do not execute any other file operations
like search() before

the flash eprom file is closed

Since version 5.0x the functions below are replaced by
general 1/O functions [s7] that are file based. We strongly recommend to use

those.
1149 exec
exec Load and execute a program from the flash
EPROM
synopsis exec (char *fname, pl,p2, ..., pn)
description With the function exec(), programs

(subroutines) are loaded from the flash
EPROM to the SDRAM memory of the DSP
and executed.

First, the name (char * fname) is used to
search for the file. If the file is found, the
loading and starting process begins.

If the file is not found, a soft reset is invoked.
Thus, make sure the file can always be found
(e.g. with the function search).

Up to 8 (int) parameters can be passed to the
program, as pl, p2, ..., pn.

All parameters are restricted to 32 bit
values (e.g. int, int *)

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

"long"-values are not supported, as they
are 40 bit.

When the program terminates, the calling
program will automatically be loaded back into
memory. Integer (32 bit) values can be
returned to the calling program.

The following applies for the called program:
Its name is:

int main(int pl, int p2, ... , int pn)
{
}

where pl,p2,..pn are the parameters passed
over from exec.

The function exec () can be used to
dynamically postload subroutines from

a main program. Subroutines loaded via exec()
may be nested. Naturally, the size of the stack
limits the level to which subroutines can be
nested.

If many parameters must be passed to the
function called by exec (), a pointer to a struct
on the stack or on the heap may pe passed
alternatively. Keep in mind that pointers use 32
bits . They will therefore fit easily in the space
of an int (32 bits). The called program may also
modify the struct's items.

Do not try to pass string constants to a
function called by exec(). Since string
constants are represented by a pointer to
initialized memory areas, the string information
may be lost (overwritten) when the function is
called.

If you have to pass string, then copy them to a
local variable first and pass the local variable
or it's address instead.

example : DO NOT !l exec("nyprog","this string
shoul d not be here")

© 2003 ... Vision Components GmbH, Ettlingen, Germany

68 Vision Components Software Documentation Version 5.0

Since version 5.0x the functions below are replaced by
general I/O functions |s7] that are file based. We strongly recommend to use
those.

11.4.10 loadf

loadf Load program from flash EPROM (for
experienced user only !)

synopsis int loadf(long addr)

description With the function loadf (), programs
(subroutines) may be loaded from the flash
EPROM into the DSP's main SDRAM memory.
The function must be called with a valid start
address (addr) of a program file (type=0) in
flash Eprom.
loadf () loads the data into memory to the load
addresses specified inside the file. It then
returns the PMEM address of the loaded
program's entry point.

NOTE: Since most programs are linked to the
same addresses in DMEM and PMEM,
loading a program with loadf() will
overwrite your program,
which will result in a system crash.

see also exec @()

Since version 5.0x the functions below are replaced by

general 1/O functions [s7] that are file based. We strongly recommend to use
those.

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.5

1151

11.5.2

I/O Functions

69

pstr les] Output a string via the serial interface

print [es] Formatted output of text and variables

sprint [70] Formatted output of text and variables to a string
hextoi [7] convert hexadecimal value string to integer
setRTS B set RTS signal (macro)

resRTS 2] reset RTS signal (macro)

setPLCn \ 75

set PLC signal (macro)

resPLCn Fﬁ

reset PLC signal (macro)

outPLC |72) output value to PLC

inPLC [7] input value from PLC (macro)

pstr

pstr Output a string via the serial interface

synopsis void pstr(char *str)

description This function outputs the string specified by the
pointer str via the serial interface. This function
differs from the function print @()in that pstr()
must not contain format control characters
such as %.
For the ASCII character LF (0xOa or \n'), a
combination of CR (0x0d or '\r') and LF is
output.

print

print Formatted output of text and variables

synopsis void print(char *format, ...)

description This function is a full-featured version of the

standard function printf ().

The following is a list of formats supported:

© 2003 ... Vision Components GmbH, Ettlingen, Germany

70

Vision Components Software Documentation Version 5.0

1153

see also

sprint

sprint

synopsis

description

The text and variables are output via the serial
interface, resp. Ethernet port..

Since the argument list is variable (...),
print() only works properly if the correct
prototype is included in the user program.
This can be done, for example, by adding the
following line:

#i ncl ude <vcrt. h>

sprint [01(), pstr [e1()

Formatted output of text and variables to a
string

void sprint(char *s, char *format, ...)

The function sprint() is equivalent to the
function print (), however the output is directed

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

1154

1155

11.5.6

see also

hextoi

hextoi
synopsis

description

setRTS

SetRTS
synopsis

description

resRTS

resRTS
synopsis

description

to the passed string s.

This can be used, for example, to prepare the
output of data on the screen.

Since the argument list is variable (...), sprint()
only works properly if the correct prototype is
included in the user program. This can be
done, for example, by adding a line

#i ncl ude <vcrt. h>

print [()

convert hex value string to integer
int hextoi(char *s)

The "\O' terminated character string s

containing the hexadecimal value is passed to
the function. The function then converts itto an

integer value.

set RTS signal (macro)
void setRTS(void)

This macro sets the RTS output of the V24
(RS232) interface to a positive voltage. This
allows communication, i.e. characters are
allowed to be sent to the camera from the
connected computer. Make sure that the host
computer is switched to "hardware handshake"
if you want to use this feature

reset RTS signal (macro)
void resRTS(void)

This macro resets the RTS output of the V24

71

© 2003 ... Vision Components GmbH, Ettlingen, Germany

72

Vision Components Software Documentation Version 5.0

11.5.7

11.5.8

11.5.9

setPLCn

setPLCn
synopsis

description

example

resPLCn

resPLCn
synopsis

description

example

outPLC

outPLC
synopsis

description

(RS232) interface to a negative voltage. This
shuts down communication, i.e. characters are
not allowed to be sent to the camera from the
connected computer. Make sure that the host
computer is switched to "hardware
handshake" if you want to use this feature

set PLC signhal (macro)
void setPLCn(void)

This macro sets the PLC signal no. n, so that
current is flowing through the corresponding
output. The signal will have a positive voltage.

set PLCO();
0 */

/* switch on output

reset PLC signal (macro)
void resPLCn(void)

This macro resets the PLC signal no. n, so that
no current is flowing to the corresponding
output. The signal will be high-impedance.

resPLCO(); /* switch of f output
0

output value to PLC
void outPLC(value)

This function outputs value to the PLC. The
function also writes the value to the system
variable PLCOUT where the state of the output
signals can be monitored at any time. Bits O to
3 of value will set the corresponding output
signals.

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

73

11.5.10 inPLC
inPLC input value from PLC (macro)
synopsis int inPLC(void)
description This macro inputs the status of the PLC input

signals. Bits 0 to 3 indicate the status of each
individual PLC input. The remaining bits are
always zero. A zero on one of the input bits
means that there is current flowing through the
corresponding PLC input. If there is no voltage
on the input, the bit will be 1.

The status of the PLC input bits can also be
monitored using the system variable PLCIN.
This variable, however, features an additional
status bit (bit #4) which indicates failure of the
PLC 1/O processor when set to 1.

11.6 DRAM Access Functions

The TMS320C62xx architecture has a huge addressing capability. SDRAM can

be addressed directly using 32bit pointers. There is no need for access functions.

The following "DRAM access functions" are included, however, for reasons of
compatibility to VC/RT versions supporting the ADSP memory architecture.

In the ADSP architecture, DRAM memory is accessed by so-called access
functions. There are functions for addressing and modification of single words
and bytes (pixels) as well as block-oriented access functions which are able to
copy a complete array of data to or from the DRAM at high speed. Pixel list
functions are discussed in chapter 10.6

© 2003 ... Vision Components GmbH, Ettlingen, Germany

74

Vision Components Software Documentation Version 5.0

116.1

11.6.2

rd20
rd20

synopsis

description

wr20
wr20

synopsis

description

Read a word from DRAM (macro)
int rd20(long addr)
This function allows a 16-bit word to be read

from the DRAM.
The required DRAM address is handed over as

a long value.

Write a word to DRAM (macro)
void wr20(int value, long addr)

This function allows a 16-bit word to be written

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.6.3

11.6.4

11.6.5

rd32
rd32

synopsis

description

see also

wr32

wr32
synopsis

description

see also
rpix
rpix
synopsis

description

to the DRAM.
The value to be written is handed over as int;
the DRAM address is passed as a long value.

Read a 32-bit long from DRAM (macro)
long rd32(long addr)

This function executes a long (32-bit) read
access from DRAM.

The required DRAM address is passed as a
long value.

The address OL is the first longword in the
DRAM, 2L is the second, etc.;

the last possible address depends on the size
of the DRAM.

rd20 [71()

Write a 32-bit long to DRAM (macro)
void wr32(long value, long addr)

This function executes a long (32-bit) write
access to DRAM.

The value to be written, value, and the DRAM
address are passed as long values.

wr20 [71()

Read a byte from DRAM (macro)
int rpix(long addr)

This function allows a byte to be read from the
DRAM.

The required DRAM address is handed over as
a long value.

75

© 2003 ... Vision Components GmbH, Ettlingen, Germany

76 Vision Components Software Documentation Version 5.0

The values of the addresses are thus twice as
large as for word accesses to the DRAM.

The read-in byte is the LSB (bit O through bit 7)
in the return value; the MSB (bit 8 through bit
15) is always O.

11.6.6 wpix
wpix Write a byte to DRAM (macro)
synopsis void wpix(int value, long addr)
description This function allows a byte to be written to the
DRAM.
The required DRAM address is handed over as
a long value.
The values of the addresses are thus twice as
large as for word accesses to the DRAM.
The byte to be written must be the LSB (bit O
through bit 7) in the parameter value. For this
function, the MSB (bit 8 through bit 15) can be
any value; the function sets it to zero.
11.6.7 Dblrdw
blrdw Read a block from DRAM, wordwise
synopsis void blrdw(int count, int *buf, long addr)
description This function reads a block of data from the

DRAM to a buffer inthe DMEM of the ADSP.
The access is made wordwise, i.e., a 16-bit
word in DRAM is stored as a 16-bit word in the
buffer. addr is the start address of the block in
the DRAM (analog to wordwise access with the
function rd20()). buf is a pointer to the internal
buffer in which the block is to be stored. count
is the number of words to be read.

There is no restriction to the value of the
pointer buf.

This function may be used when it is
necessary to transfer large amounts of data as
blocks. Use the function rd20 Fh()for random
access.

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.6.8 blwrw

blwrw
synopsis

description

11.6.9 blwrb
blwrb

synopsis

description

Write a block to DRAM, wordwise
void blwrw(int count, int *buf, long addr)

This function writes a block of data from an
internal buffer in the DMEM of the ADSP to the
DRAM.

The access is made wordwise, i.e., a 16-bit
word in the buffer is stored as a 16-bit word in
the DRAM.

addr is the start address of the block in the
DRAM to be written to (analog to wordwise
access with the function wr20()), buf is a
pointer to the internal buffer from which the
block is to be read. count is the number of
words to be written.

There is no restriction to the value of the
pointer buf.

This function may be used when it is
necessary to transfer large amounts of data as
blocks. Use the function Mﬁh()for random
access.

Write a block to DRAM, bytewise
void blwrb(int count, int *buf, long addr)

This function reads a block of data from a
buffer and writes it to the DRAM.

Access is made bytewise. That means two 16-
bit words in the buffer are stored in

compressed form as one 16-bit word in the
DRAM.

The LSB (bit O through bit 7) of the first word in
the buffer (lower address)

is stored as the MSB (bit 8 through bit 15) of
the DRAM word. The LSB (bit 0 through bit 7)
of the next buffer word is stored as the LSB (bit
0 through bit 7) of the DRAM word.

The MSB (bit 8 through bit 15) of the words in

77

© 2003 ... Vision Components GmbH, Ettlingen, Germany

78

Vision Components Software Documentation Version 5.0

11.6.10 rovl

rovl
synopsis

description

11.6.11 wovl

wovl
synopsis

description

the DMEM must always be 0, as otherwise a
malfunction will result.

addr is the start address of the block in the
DRAM (analog to wordwise access with the
function wr20()). buf is a pointer to the buffer
from which the block is to be read. count is the
number of words to be written.

The number of bytes read from the buffer is
twice as large as count.

There is no restriction to the value of the
pointer buf.

This function may be used when it is
necessary to transfer large amounts of data as
blocks. Use the function wpix()for random
access.

Read the overlay bit from DRAM (macro)
int rovl(long addr)

Since overlay data are stored in bytes rather
than bits in the TMS320C62xx architecture this
macro is essentially the same as the rpix()
macro.

This function reads one byte from the DRAM.
The required DRAM address is handed over as
a long value. Bits 7 through 31 of the returned
value are 0.

Write the overlay bit to DRAM (macro)
void wovl(int value, long addr)

Since overlay data are stored in bytes rather
than bits in the TMS320C62xx architecture this
macro is essentially the same as the wpix()
macro.

This function writes one byte to the DRAM.
The required DRAM address is handed over as

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.6.12 birdo
birdo

synopsis

description

11.6.13 blwro

blwro

synopsis

description

11.6.14 xorpix

XOrpix
synopsis

description

a long value. The byte to be written must be
the LSB of the parameter value. For this

function, bits 7 through 31 of value are
redundant.

Read a block from DRAM, bitwise (overlay,
macro)

void bilrdo(int count, int *buf, long addr)

Since overlay data are stored in bytes rather
than bits in the TMS320C62xx architecture this

macro is mapped to the blrdb() function.

Write a block to DRAM, bitwise (overlay,
macro)

void blwro(int count, int *buf, long addr)

Since overlay data are stored in bytes rather
than bits in the TMS320C62xx architecture this
macro is mapped to the blwrb() function.

XOR a byte in DRAM (macro)
void xorpix(int value, long addr)

This function executes a bytewise (8-bit) XOR
write access to the DRAM.

The required DRAM address is passed as a
long value.

The byte to be written must be the LSB (bit O
through bit 7) of the parameter value. The MSB
(bit 8 through bit 15) does not matter for this
function - the function sets it.

The XOR function of value and the addressed
pixel is calculated, and the result is written
back to the same place in the DRAM.

79

© 2003 ... Vision Components GmbH, Ettlingen, Germany

80 Vision Components Software Documentation Version 5.0

see also

11.6.15 xorovl

xorovl
synopsis

description

see also

11.6.16 blrds
birds

synopsis

description

see also

11.6.17 rdrlc

rdrlc
synopsis

description

wpix_7s]()

XOR an overlay bit (macro)
void xorovl(int value, long addr)

Since overlay data are stored in bytes rather
than bits in the TMS320C62xx architecture this

macro is essentially the same as the xorpix()
macro.

wovl_[7]()

read block of pixels with subsampling
void blrds(int count, int *buf, long addr, int rh)

This function reads a block of data from the
DRAM and writes it to a buffer.

It performs pretty much like the function
birdb @(), except for that the function blrds()
performs subsampling by the subsampling
ratio 2*rh.

There is no restriction to the value of the
pointer buf.

This function may be used when it is
necessary to transfer large amounts of data as
blocks.

birdb le1]()

read one line of RLC data
int rdric(int dx, int *buf, long ric)
The function reads a line of RLC starting at

DRAM address rlc
and transfers the data into DMEM starting at

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.7

bilrdb

birdb
synopsis

description

address buf.

dx is the end-of-line mark of the RLC used,
which is equivalent to

the horizontal width of the corresponding
binary image.

The function returns the number of words
transferred to DMEM as an

integer value.

There is no restriction to the value of the
pointer buf.

This function may be used when it is
necessary to transfer large amounts of data as

blocks.

The function performs the following basic rlc
input function (equivalent C-program):

int rdric(int dx, int *p, long rlc)

cnt =1;

whi |l e((*p=rd20(rl c++))! =dx)
{
p++
cnt ++;

}

return(cnt);

Read a block from DRAM, bytewise
void bilrdb(int count, int *buf, long addr)

This function reads a block of data from the
DRAM and writes it to a buffer. The access is
made bytewise, i.e., a 16-bit word in the DRAM
is stored in the buffer as two words (16 bits) in
the buffer.

The MSB (bit 8 through bit 15) of the DRAM
word is stored in the buffer as the LSB (bit O
through bit 7) of the first word (lower address).
The LSB (bit O through bit 7) of the DRAM
word is stored in the LSB (bit O through bit 7) of
the next word (higher address) in the buffer.

81

© 2003 ... Vision Components GmbH, Ettlingen, Germany

82

Vision Components Software Documentation Version 5.0

11.8

The MSB (bit 8 through bit 15) of the words in
the buffer is always O.

addr is the start address of the block in the
DRAM (analog to wordwise access with the
function rd20()). buf is a pointer to the internal

buffer where the block is to be stored. count is
the number of words to be read.

The number of bytes written to the buffer is
twice as large as count.

There is no restriction to the value of the
pointer buf.

Note:

Storing the individual bytes of a 16-bit word in
the LSB of the buffer is especially appropriate
for frame processing functions. The contents of
the buffer (such as a line from the video
memory) can be modified by e.g. a filter
function. The line can then be written back to
the video memory using the function blwrb().

This function may be used when it is
necessary to transfer large amounts of data as

blocks. Use the function Lpi_xﬁsﬁ()for random
access.

Functions for Processing of Pixel Lists

ad_calc address calculation for an array with x/y-
coordinates

wp_list write video memory/access via address list

wp_set write video memory with constant/access via
address list

Wp_xor XOR video memory with constant/access via
address list

wo_set write overlay with constant/access via address
list

WO_ xor XOR overlay with constant /access via address
list

rp_list read video memory/access via address list

wo_list write overlay memory/access via address list

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

ro_list

11.8.1 ad_calc

ad_calc

synopsis

description

example

read video memory/access via address list

address calculation for an array with
xly-coordinates

void ad_calc(int count, int *xy,
long ad_list[], long start, int pitch)

This function calculates the corresponding
video memory DRAM addresses for an array
with x/y pairs.

The addresses can be used for the access
functions rpix and wpix, as well as for the
overlay functions rovl and wovl.

It is, however, especially efficient to combine
ad_calc() with functions which work with
address lists, such as wp_list(), rp_list(),
wo_list)and ro_list().

The addresses are calculated in accordance
with the following C program:

for(i=0; i<count; i++)
ad_list[i] = start + (long) X]i] + (long) y[i] *
pitch;

The prototype for the two-dimensional array
xy[][2] is specified as int *xy. This allows
various types of access (see also the
examples of the function linexy()).

The arrays xy[][2] and ad_list[]are allowed to
be identical. The values for x and y are then
replaced by the corresponding addresses.

int pitch=getvar(vpitch);

int i,x,y,v_list[200];

long ad_|ist[200];

long start = 100L*pitch + 100L;

int *xy;

xy = ad_list; /[* same array */
for(i=0;i<200;i++)

;[(:y:i ;

xy[1][0] = x;

83

© 2003 ... Vision Components GmbH, Ettlingen, Germany

84 Vision Components Software Documentation Version 5.0

Coxy[i][1] =y;
v_list[i] = 255;

ad_cal c(200, (int
*)xy,ad_list,start, pitch);
wp_list(200,ad list,v_list);

see also: Functions for processing pixel lists |07

11.8.2 wp_list
wp_list write video memory/access via address list
synopsis void wp_list(int count, long ad_list[], int v_list[])
description This function writes an array of values (v_list[])

to the video memory. The corresponding video
memory addresses are taken from the array
ad_list[].

Both arrays should be the same size, and
should contain at least count elements. count
is the number of pixels which are written. It
must be greater than or equal to 1.

example i nt pitch=getvar(vpitch);
int i,x,y,v_|list[200];
long ad_Ilist[200];
long start = 100L*pitch + 100L;

for(i=0;i<200;i ++)
{
X=y=i;
ad_list[i]
(long)y * pitch;
v_list[i]

start + (long)x +

wp_list(200,ad_list,v_list);

Note It is more efficient to use the function ad_calc()
to calculate the addresses, instead of the
above for loop.

see also Functions for processing pixel lists 202

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.8.3 wp_set

Enter topic text here.

11.8.4 wp_xor

wp_xor

synopsis

description

see also

11.8.5 wo_set

wo_set

synopsis

description

see also

XOR video memory with constant/access
via address list

void wp_xor(int count, long ad_list[], int value)

This function XORs the video memory with
value and writes the

result back to the video memory.

The corresponding video memory addresses
are taken from the array ad_list[].

This array should contain at least count
elements.

count is the number of pixels which are written.

It must be greater than or equal to 1.

wp_list(), wp_set(), Functions for processing
pixel lists

write overlay with constant/access via
address list (macro)

void wo_set(int count, long ad_list[], int value)

This function writes value to the overlay. The
corresponding overlay addresses are taken
from the array ad_list[].

This array should contain at least count
elements.

count is the number of pixels which are written.

It must be greater than or equal to 1

wp_set(), wp_list()Functions for processing
pixel lists

85

© 2003 ... Vision Components GmbH,

Ettlingen, Germany

86

Vision Components Software Documentation Version 5.0

11.8.6

11.8.7

Wo_xor

Wo_Xxor

synopsis

description

see also

rp_list
rp_list
synopsis

description

example

XOR overlay with constant /access via
address list (macro)

void wo_xor(int count, long ad_list[], int value)

This function XORs the overlay with value and
writes the result back to the overlay.

The corresponding overlay addresses are
taken from the array ad_list[].

This array should contain at least count
elements. count is the number of pixels which
are written.

It must be greater than or equal to 1

wo_set, wp_xor()Functions for processing pixel
lists

read video memory/access via address list
void rp_list(int count, long ad_list[], int v_list[])

This function reads a number of pixels from the
video memory and writes the corresponding
values to the array v_list][].

The corresponding overlay addresses are
taken from the array ad_list[].

Both arrays should be the same size and
should contain at least count elements.

count is the number of pixels which are written.
It must be greater than or equal to 1.

int pitch=getvar(vpitch);

int i,x,y,v_list[200];

long ad_|ist[200];

long start = 100L*pitch + 100L;

for(i=0;i<200;i ++)

{

X=y=i;

ad_list[i] = start + (long)x +
(long)y * pitch;

}

rp_list(200,ad _list,v_list);

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

Note:

see also

11.8.8 wo_list

wo_list

synopsis

description

example

Note:

see also

for(i=1; i<200; i++) print("value:
%l\n",v_list[i]);

It is more efficient to use the function ad calc()
to calculate the addresses, instead of the
above for loop.

wp_list [eal(), ro_list [s]()

Functions for processing pixel lists 202

write overlay memory/access via address
list

void wo_list(int count, long ad_list[], int v_list[])

This function writes an array of values (v_list[])
to the overlay memory. The corresponding
overlay addresses are taken from the array
ad_list[].

Both arrays should be the same size and
should contain at least count elements.

count is the number of pixels which are written.

It must be greater than or equal to 1.

i nt pitch=getvar(vpitch);
int i,x,y,v_list[200];

I ong ad_Ilist[200];

long start;

start = (long) Overlay Page * PGSIZE *16;
start += Overlay O fset;

for (i =0;i<200; i ++)
{

X=y=i;
ad_list[i]

(long)y * pitch;
v list[i]

start + (long)x +

1;

wo_|ist(200,ad list,v_list);
It is more efficient to use the function ad_calc()
to calculate the addresses, instead of the

above for loop.

wp_list [#1(), ro_list [=]() Functions for

87

© 2003 ... Vision Components GmbH, Ettlingen, Germany

88

Vision Components Software Documentation Version 5.0

11.8.9

ro_list

ro_list

synopsis

description

example

Note

see also

processing pixel lists

read video memory/access via address list

void ro_list(int count, long ad_list[], int
v_list[])

This function reads a number of pixels (1 bit)
from the overlay memory and writes the
corresponding values to the array v_list[].

The corresponding overlay addresses are
taken from the array ad_list[].

Both arrays should be the same size and
should contain at least count elements.

count is the number of pixels which are written.
It must be greater than or equal to 1.

int pitch=getvar(vpitch);
int i,x,y,v_list[200];
long ad_Ilist[200];

long start;

start = (long) Overlay Page * PGSIZE *16;
start += Overlay_ O fset;

for(i=0;i<200;i ++)

{

X=y=I ;

ad_list[i] = start + (long)x +
(I?ng)y * pitch;

ro list(200,ad_list,v_list);

for(i=1; i<200; i++) print("val ue:
%l\n",v_list[i]);

It is more efficient to use the function ad_calc()
to calculate the addresses, instead of the
above for loop.

rp_list les](), wo_list [+7)()
Functions for processing pixel lists @

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 89

11.9 Video Control Functions

capture_request] put request for image capture into capture
queue
vmode |o2] Set video modes
tgict@ Picture taking function
Lgp\geﬁ Picture taking function / progressive scan
tpstart |ss] Picture taking function / progressive scan
tpwait |os] Wait for completion of picture taking
function / progressive scan
tenable |] Trigger enable for interrupt driven image
acquisition
trdy ee] Check the status of the picture taking
function /external trigger mode
shutter [7] select shutter speed
11.9.1 capture_request
capture_request put request for image capture into capture
queue
synopsis int capture_request (int exp, int gain, int *start,
int mode)
description This is the most basic function for capturing an

image on which all other functions in this
chapter like tpict or tpp are based. With this
function, the user is able to achieve the best
performance for the video capture process.

It is possible for the image acquisition
hardware, especially for the sensor to process
more than one image capture requests in
parallel. It can read out one image and transfer
it to memory while exposing another one. So,
the maximum frame rate can be achieved. Of
course there are some limitations:

The maximum frame rate can only be achieved
if the exposure time is less than the read-out
time. Otherwise, the maximum frame rate is
determined by the exposure time.

© 2003 ... Vision Components GmbH, Ettlingen, Germany

90

Vision Components Software Documentation Version 5.0

Exposure starts when the time left for read-out
equals the exposure time or is less. If the
image acquisition is triggered by software
(mode=0), it always starts as soon as possible.
If the image is triggered externally (mode=1),
the user may choose the trigger to be "lossy"
(SET _trig_lossy()) or "sticky"

(SET _trig_sticky()). In the first case the trigger
will be lost, if it comes too early, in the latter
case, it will be stored until image acquisition is
possible.

With this function, complete control and
tracking individual images is possible.
The following parameters may be set for
individual images:

exp exposure time in units of EXUNIT msecs
(video double-lines)

gain gain setting for ADC

start start address for image storage

mode internal / external trigger mode
(mode=0: int., mode=1: ext.)

Exposure time is calculated according to the
following formula:

Exptime[msec] = (exp + 520/944) * EXUNIT

So, exp=0 means a shutter time of
approximately 30 msecs. Shutter times may be
quite large, e.g. several seconds. Please note,
that with shutter times above 1 sec individual
pixels may feature large amounts of spot
noise, those pixels may even be fully

saturated. This is normal and no reason for
return of equipment. Use appropriate filtering
to reduce this kind of noise.

Gain is calculated according to the following
formula:

realgain[dB] =6 + (32*gain/256)
accuracy: +/- 1dB

Due to the hardware architecture of the ADC

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

steps at gain=63/64 and gain=63/64 may not
be monotonic. The amplification of the PGA
may then be calculated with the following
formula:

amplification = 107(realgain/20)

For large differences in gain from one picture
to the next, the ADC may take some time to
track the black level. If this is a problem, you
should insert one picture for adjustment.

Be sure that you have allocated enough
memory at address start for the image to be
stored.

Mode=1 means external trigger. If the
corresponding image is processed, the system
waits for the external trigger to start acquisition.
The system may wait indefinitely in this state if
no trigger is received.

The capture requests are put into a queue of
20 slots. As long as slots are available a call of
capture_request() returns immediately
regardless if the picture is taken without delay
or the request is just stored in the queue.

If the queue is full, the function will return 0. No
request is stored.

When the request is stored, the function
returns a non-zero token or tracking number
for this request. This number may be used to
poll the system variables EXPOSING,
STORING and IMGREADY, where the tracking
numbers of the images requested in the
different states are shown.

It is not allowed to call this function in live
mode (vmode(0), vmode(2), vmode(4),
vmode(6)). This is not checked !

© 2003 ... Vision Components GmbH, Ettlingen, Germany

92

Vision Components Software Documentation Version 5.0

11.9.2

1193

vmode

vmode
synopsis

description

Set video modes

void vmode(int mode)

This function changes the modes for the video
controller.

The settings are made according to the
following table:

mode

meaning

IMODE

OVLY_ACTIVE

0

live video + cyclic image acquisition

display of the video memory (stills)

live video + cyclic image acquisition

display of the video memory (stills)

like O but including overlay display

like 1 but including overlay display

like 2 but including overlay display

N o o A W NP

like 3 but including overlay display

R O k| O Rr| O -

R R R R O o O

Other values for mode are not defined.

The setting of the system variables determines the location and

format of the display (mode 1, 3, 5, 7) and how the frame is stored

(mode 0, 2, 4, 6).

The function changes the value of the system variables IMODE and
OVLY_ACTIVE (see table)

Changes of the video mode come into effect after the completion of
the next frame.

tpict
tpict
synopsis

description

Picture taking function

void tpict(void)

This function takes a picture. The function

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

Note

1194 tpp
tpp
synopsis

description

waits in a loop until the entire picture is in
memory.

This function was implemented to provide a
"compatibility mode" to the tpict() function of
cameras not equipped with progressive
scan sensor.

It does not completely support, however, the
special progressive scan features. Itis
therefore recommended to use the functions
capture_request() or tpp(), whenever the
special progressive scan features are needed.

The current setting of the system variables
determines the location and format of the
stored picture in memory.

tpict () changes the video mode.

After this function is called, the system
switches to still frame (vmode=1). If overlay is
active, the system switches to still frames
with overlay (vmode=5).

The function changes the value of the system
variable IMODE to 1.

Picture taking function /progressive scan
int tpp(void)

This function takes a picture in progressive
scan mode. This means, that the sensor starts
with image integration without any delay.

The exposure time is determined by the
selected shutter speed which can be controlled
with the shutter() function.

After the image integration, the information is
transferred to the DRAM.

The sensor always works in full frame mode,
i.e. there are no half images.

The function waits in a loop until the entire
picture is in memory. It is not allowed to call
tpp() in all video modes. See the following
table for allowed video modes:

93

© 2003 ... Vision Components GmbH, Ettlingen, Germany

Vision Components Software Documentation Version 5.0

vmode setting description use of tpp()
vmode(0) live video storage not allowed
vmode(1) still video allowed
vmode(2) live video storage not allowed
vmode(3) still video allowed
vmode(4) vmode(0) + overlay not allowed
vmode(5) vmode(1) + overlay allowed
vmode(6) vmode(2) + overlay not allowed
vmode(7) vmode(3) + overlay allowed

if tpp() is called in a video mode for which it is
not allowed, it returns -1 and no picture is
taken. If it is necessary, to take a picture while
being in one of the not allowed video modes,
the function tpict() may be used. This,
however, means that the immediate

triggering of the progressive scan sensor
cannot be used.

Note: tpp () does not change the video mode.

The following example shows the use of
tpp()with external trigger.

example
vhode(1); /[* still node
*/
whi | e(i nPLC() &0x01) !'= 0); /[* wait for
trigger */
tpp(); /* take
picture */
Note: Using this function does not support parallel

processing (exposing while storing the image).
For maximum performance, the function
capture_request @() is recommended.

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.95

11.9.6

11.9.7

tpstart

tpstart
synopsis

description

Note :

tpwait

tpwait

synopsis

description

tenable

tenable

synopsis

description

Picture taking function /progressive scan
int tpstart(void)

This function is quite similar to the function
tpp(). The only difference is that it does not
wait for the completion of the image taking
process.

Using this function does not support parallel
processing (exposing while storing the image).
For maximum performance, the function
capture_request @() is recommended.

Wait for completion of picture taking
function (macro)

void tpwait(void)

This function is used to make sure, that an
image taking process, started

with tpstart @() is completed.

If so, the function immediately returns, if not,
the function waits in a loop.

Trigger enable for interrupt driven image
acquisition

int tenable(void)

this function resembles the tpp() function,
except for the fact that the

start of the image integration is triggered by the
external signal INO.

An image can only be triggered externally, if
tenable() has been called

before.

A call of tenable()activates the acquisition of
one image only.

95

© 2003 ... Vision Components GmbH, Ettlingen, Germany

96 Vision Components Software Documentation Version 5.0

After the call of tenable()the function returns to
the caller, so processing

can be done in parallel to image acquisition.

Of course it makes no sense to process an
image which might change

due to an external trigger, but the processing
of a previously stored image

is possible.

For details of the image-taking process, please
refer to the documentation

of the tpp @() function.

if tenable () is called in a video mode for which
it is not allowed, it returns -1 and the picture-
taking is not enabled.

Note: Please do not change the video mode after
tenable() has been called and before the
image has been successfully stored in
memory.

Note: Using this function does not support parallel
processing (exposing while storing the image).
For maximum performance, the function
capture_request @() is recommended.

11.9.8 trdy

trdy Check the status of the picture taking
function

synopsis int trdy(void)

description This function is used to check, if an image
taking process, started
with tenable() is completed.
If so, the function returns 1, if not, the function
returns O.

example tenabl e(); /* now wait for external

trigger */
while('trdy()); /* wait for
conpl etion */

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.9.9 shutter

shutter
synopsis

description

Note

11.9.10 SET _trig_lossy

SET trig_lossy
synopsis

description

11.9.11 SET _trig_sticky

SET_trig_sticky
synopsis

description

select shutter speed
long shutter(long stime)

This function selects the shutter speed for the
CCD sensor.

The shutter speed is specified with the value
stime in microseconds.

The shutter speed of the sensor will be set to a
possible value close to the one specified. The
function will return the exact shutter speed
selected in microseconds. The possible shutter
values range from approx. 90 msec to several
seconds depending on the CCD sensors.

With shutter times above 1 sec individual
pixels may feature large amounts of spot
noise, those pixels may even be fully
saturated. This is normal and no reason for

return of equipment. Use appropriate filtering
to reduce this kind of noise

select "lossy" external trigger mode
void SET_trig_lossy(void)

If the external trigger mode for the image
acquisition is selected, there is an error
condition if the trigger signal is set during the
ackquisition time of the previous page. In this
case the user may choose to lose the trigger
information (SET trig_lossy()) or store it until
image acquisition becomes possible
(SET_trig_sticky()).

select "sticky" external trigger mode
void SET _trig_sticky(void)

If the external trigger mode for the image

97

© 2003 ... Vision Components GmbH, Ettlingen, Germany

98 Vision Components Software Documentation Version 5.0

acquisition is selected, there is an error
condition if the trigger signal is set during the
ackquisition time of the previous image. In this
case the user may choose to lose the trigger
information (SET _trig_lossy()) or store it until
image acquisition becomes possible

(SET _trig_sticky()).

11.10 RS232 (V24) Basic Functions

rs232snd |es] output a character/serial interface
rs232rcv | %) read a character/serial interface
sbready B send buffer ready/serial interface
sbfull oo send buffer full/serial interface
rbready 100 receive buffer ready/serial interface
rbempty o receive buffer empty/serial interface
setbaud ot set baudrate for serial interface
kbdrcy o read a character/keyboard
kbready |2 receive buffer ready/keyboard
11.10.1rs232snd

rs232snd Output a character/serial interface

synopsis void rs232snd(char c)

description This function outputs one buffered ASCII

character via the serial interface.

If the send buffer is not full, the ASCII
character is buffered and program control
returns to the calling program.

Otherwise, this function waits until there is
room in the buffer, buffers the character and
then returns to the calling program.

The buffer is read in the background by an
interrupt routine.

The character is transferred via the serial
interface as a background process.

The send buffer can hold a maximum of 255

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

Note :

see also
11.10.2 rs232rcv
rs232rcv
synopsis

description

Note :

see also
11.10.3 sbready

sbready

synopsis

description

characters.

neither hardware nor software handshaking is
used in this routine

rs232rcv |ss(), sbready [ssl()

Read a character/serial interface
char rs232rcv(void)

This function reads one buffered ASCII
character from the serial interface.

A background interrupt routine writes the
character to the buffer. Characters will be lost if
the buffer overflows!

The function rs232rcv() first determines if there
is a character in the buffer. If not, it waits until
this is the case.

The character is then removed from the buffer
and handed over to the calling program as a
return value.

The receive buffer can hold a maximum of 255
characters.

neither hardware nor software handshaking is

used in this routine

rs232snd |1(), rbready hol()

send buffer ready/serial interface
int sbready(void)

This function returns the number of available
buffer places for the send buffer of the serial
interface. If the return value is 0, no space is
available and a character output with

99

© 2003 ... Vision Components GmbH, Ettlingen, Germany

100 Vision Components Software Documentation Version 5.0

rs232snd() will wait until space gets available.

see also rs232snd @(), sbfull Ra()
11.10.4 sbfull
sbfull send buffer full/serial interface
synopsis int sbfull(void)
description This function checks the send buffer for the

serial interface.

If it is full, the function returns the value -1;
otherwise, it returns the amount of free space,
as a number of characters.

Note: Do not use this function for new
development, since it is included for
compatibility only. Use the function
shready l#]() instead.

see also rs232snd [ss1(), shready [1()

11.10.5 rbready

rbready receive buffer ready/serial interface
synopsis int rbready(void)
description This function returns the number of characters

stored in the receive buffer of the serial
interface. If the return value is 0, no character
is available and a character input with
rs232rcv() will "hang" until a character gets

available.

note buffer space for this function is always 1
character for VC/RT 5.0x for reasons of
compatibility.

see also rs232rcv @(), rbempty @()

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 101

11.10.6 rbempty

rbempty receive buffer empty/serial interface
synopsis int rbempty(void)
description This function checks the receive buffer for the

serial interface. If it is empty, the function
returns the value -1; otherwise, it returns the
number of characters in the buffer.

Calling this function is especially
recommendable when a character is to be read
from the serial interface but it is not certain if
any characters were received. In this case,
calling the function rs232rcv() might cause the
system to "hang".

note buffer space for this function is always 1
character for VC/RT 5.0x for reasons of
compatibility.

Note: Do not use this function for new

development, since it is included for
compatibility only. Use the function
rbread Bri()instead.

see also rs232rcv (), rbready ()

11.10.7 setbaud

setbaud set baudrate for serial interface
synopsis void setbaud(long baudrate)
description The function sets the hardware baudrate clock

to the specified value.

example set baud(9600L) /* set baudrate to
9600 baud */

© 2003 ... Vision Components GmbH, Ettlingen, Germany

102 Vision Components Software Documentation Version 5.0

11.10.8 kbdrcv

kbdrcv Read a character/keypad
synopsis char kbdrcv(void)
description This function reads one buffered ASCII

character from the keypad VCSKB.

A background interrupt routine writes the
character to the buffer. Characters will be lost if
the buffer overflows!

The function kbdrcv() first determines if there is
a character in the buffer. If not, it waits until
this is the case.

The character is then removed from the buffer

and handed over to the calling program as a
return value.

The receive buffer can hold a maximum of 63
characters.

Note: neither hardware nor software handshaking is
used in this routine

11.10.9 kbready

kbready receive buffer ready/keyboard
synopsis int kbready(void)
description This function returns the number of characters

stored in the receive buffer of the serial
interface. If the return value is 0, no character
is available and a character input with

rs232rcv @() will "hang" until a character gets
available.

see also kbdrev |1d (), rbready lool()

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 103

11.11 Low Level EPROM Access Functions

11.11.1 getf8
getf8

synopsis

description

11.11.2 getfl6
getfl6

getf8 o low-level function for reading a byte/flash EPROM
(macro)

getf16 0l low-level function for reading a 16-bit word/flash
EPROM (macro)

getf32 04 low-level function for reading a 32-bit word/flash
EPROM (macro)

flpgm 04 low-level function for writing a byte/flash EPROM
(macro)

flpgm8 hs| low-level function for writing a byte/flash eprom

flogm16 106 low-level function for writing a word/flash eprom

flpgm32 hor| low-level function for writing a long-word/flash

eprom
erase horl Jow-level function for erasing sectors/flash EPROM
bdma copy flash eprom to DMEM via BDMA

low-level function for reading a byte/flash
EPROM (macro)

int getf8(long addr)

The function getf8() reads a byte from the flash
EPROM. addr is the address of the memory
location to be read.

The function returns the byte as the return
value (int). The MSB of the return value is
always O.

The flash EPROM can be written to and read
from, independent of the sectors it is divided
into.

In contrast to writing, the function getf8()can
read all bytes of the flash EPROM, even the
boot sector.

low-level function for reading a 16-bit
word/flash EPROM (macro)

© 2003 ... Vision Components GmbH, Ettlingen, Germany

104 Vision Components Software Documentation Version 5.0

synopsis int getf16(long addr)

description The function getfl6() reads a 16-bit word from
the flash EPROM, i.e. two bytes from adjacent
memory locations.
addr is the address of the first memory location
to be read. This function returns the read byte
and the following one as a 16-bit word return
value (int).
The flash EPROM uses linear addressing.
The flash EPROM can be written to and read
from independent of the sectors it is divided
into.
In contrast to writing, the function getfl6 ()can
read all bytes of the flash EPROM, even the
boot sector

11.11.3 getf32

getf32 low-level function for reading a 32-bit
word/flash EPROM (macro)

synopsis long getf32(long addr)

description The function getf32() reads a 32-bit word from
the flash EPROM i.e. four bytes from adjacent
memory locations.
addr is the address of the first memory location
to be read. This function returns the read byte
and the following three as a 32-bit word return
value.
The flash EPROM uses linear addressing,
starting at address OL.
Thus, the flash EPROM can be written to and
read from independent of the sectors itis
divided into.
In contrast to writing, the function getf32()can
read all bytes of the flash EPROM, even the
boot sector.

11.11.4 flpgm

flpgm low-level function for writing a byte/flash
EPROM (macro)

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 105

synopsis int flpgm(long addr, int value)

description The function flpgm() writes (programs) a byte
to the flash EPROM.
addr is the address of the memory location to
be programmed, value is the value to be
written to the flash EPROM.
The flash EPROM uses linear addressing,
starting at address OL.
The flash EPROM can be written to and read
from independent of the sectors it is divided
into.
Make sure to erase a memory location before
writing (see the function erase ﬁ).
Erasing resets a sector's bytes to Oxff.
A byte must first have the value Oxff before it
can be overwritten.
The function flpgm() cannot write boot sector
addresses, because the operating system is
located there.
Writing a byte takes about 16 psec.

This function returns the value 0 after the byte
has been written.

If the byte could not be written, the function
returns a negative value:

Error Return value

Sector 0 accessed -1

Memory location already programmed -2
Note : Functions flpgm8 @() ,_flpgm16 Reﬁ() and

flpgm32 Eﬁo all use reversed arguments. It is
therefore recommended not using flpgm() but
flogm8() instead.

11.11.5 flpgm8

flpgm8 low-level function for writing a byte/flash
EPROM
synopsis int flpgm8(int value, long addr)

© 2003 ... Vision Components GmbH, Ettlingen, Germany

106 Vision Components Software Documentation Version 5.0

description The function flpgm8() writes (programs) a byte
to the flash EPROM.
addr is the address of the memory location to
be programmed, value is the value to be
written to the flash EPROM.
The flash EPROM uses linear addressing,
starting at address OL.
For the 2MB EPROMs the last memory
location is Ox1fffffL .
Thus, the flash EPROM can be written to and
read from independent of the sectors itis
divided into.
Make sure to erase a memory location before
writing (see the function erase ﬁ).
Erasing resets a sector's bhytes to Oxff.
A byte must first have the value Oxff before it
can be overwritten.
The function flpgm8() cannot write boot sector
addresses (0x000000L
through OxO5ffffL), because the operating
system is located there.
Writing a byte takes about 16 pusec.

This function returns the value O after the byte
has been written.

If the byte could not be written, the function
returns a negative value:

Error Return value

Sector 0 accessed -1
Memory location already programmed -2

11.11.6 flpgm16

flpgm16 low-level function for writing a word
EPROM

synopsis int flpgm16(int val, long addr)

description see flpgm8()

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.11.7 flpgm32

flpgm32

synopsis
description

11.11.8 erase

erase

synopsis

description

note

low-level function for writing a long-word to
flash EPROM

int flpgm32(long val, long addr)

see flpgm8 10 0

low-level function for erasing sectors/flash
EPROM

int erase(int sector)

This function erases a single sector of the flash
EPROM.

The employed flash EPROMs have 2 MBytes
and consist of 32 sectors of 64 KB each.
Sectors 0-5 are reserved for the operating
system and some utilities, and thus cannot be
erased.

Sectors 6 through 31 are available to the user
and can be erased at any time.

Erasing a sector takes around 1.5 seconds (30
at most).

This function returns the value O after the
sector is erased.

If the sector could not be erased (e.g., the user
tried to erase sector 0), the function returns the
value -1.

This function exists only for campatibility
reasons. Handle with greates care.

If sectors are erased that are used by the
directory structure, the camera will crash.

Use file based functions Eﬁ instead.

107

© 2003 ... Vision Components GmbH, Ettlingen, Germany

108 Vision Components Software Documentation Version 5.0

11.12 Utility Functions

getvar Read system variable (macro)
setvar Write system variable (macro)
getlvar Read system variable (long, macro)
setlvar Write system variable (long, macro)
getstptr Read stack pointer
getdp Read data pointer
getbss read start of bss
11.12.1 getvar

getvar Read system variable

synopsis int getvar(int var)

description The function getvar() reads the value of a

system variable. var is usually a system
variable from the file sysvar.h

example #i ncl ude <sysvar. h>
i nt node;
node = getvar(IMODE); [/* get video
node */

11.12.2 setvar

setvar Write system variable
synopsis void setvar(var, int x)
description The function setvar() changes the value of a

system variable.
var is usually a system variable from the file
sysvar.h, x is the value to be written.

example #i ncl ude <sysvar. h>
setvar (DI SP_ACTI VE, 0); /* disable video
refresh */

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.12.3 getlvar

getlvar
synopsis

description

11.12.4 setlvar

setlvar
synopsis

description

11.12.5 getstptr

getstptr
synopsis

description

11.12.6 getdp

getdp
synopsis

description

Read system variable (long)
long getlvar(int var)
The function getlvar() reads the value of a long

system variable (40 bits). var is usually a
system variable from the file sysvar.h

Write system variable (long)

void setlvar(int var, long X)

The function setlvar() changes the value of a
long system variable (40 bits). var is usually a

system variable from the file sysvar.h, xis the
value to be written.

Read stack pointer
int getstptr(void)
The function getstptr() reads the current value

of the stack pointer.
This can be useful when debugging programs.

Read data pointer
int getdp(void)
The function getdp() reads the current value of

the data pointer.
This can be useful when debugging programs.

109

© 2003 ... Vision Components GmbH, Ettlingen, Germany

110 Vision Components Software Documentation Version 5.0

11.12.7 getbss

getbss read start of bss
synopsis int getbss(void)
description The function getbss() reads the start of the bss

space to a C program.
This can be useful when debugging programs.

11.13 Lookup Table Functions

Enter topic text here.

11.13.1 set_overlay_bit

set_overlay_bit assign a color to an overlay bitplane
synopsis int set_overlay_bit(int bit, int r, int g, int b)
description This function programs the overlay

lookuptable. A color given by (r,g,b) can be
assigned to the bitplane given by bit.

r,g,b 1[0,255]
bit T [2,7]

6 overlay bit planes (bit=2 .. bit=7) are
available for overlay graphics. bit=0 and bit=1
are reserved for translucent overlay graphics.
Higher bithnumbers have priority over lower
ones, i.e. whenever a bit is set in an overlay
byte, lower number bits of this bytes are "don't
care". This rule also applies to the translucent
bits 0 and 1, i.e. whenever at least one of the
bits 2..7 is set, the overlay pixel is no longer
translucent.

The function returns -1 if bit is out of range,
else 0.

example imge a = {0OL, 16, 16, 768};
a.st = (long)getvar(OVLY_START);

mar ker d(&a, 8) ; [* draw marker */
set _overlay bit(3,0,255,0); [/*

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.13.2 set_lut_comp

set_lut_comp

synopsis

description

example

11.13.3 set_translucent

set_translucent
synopsis

description

green */

compatibility mode for earlier VC/RT
versions

void set_lut_comp(int r, int g, int b)

Earlier versions of VC/RT have just one
overlay bitplane. It was possible to use this
overlay translucent, but in most cases it was
assigned to one overlay color. If you have
software compiled for earlier VC/RT versions
you may use this function.

It assigns the color defined by r,g,b 1[0,255] to
overlay bit 0. Since this is a translucent overlay
plane only 2 translucent overlay planes remain
if you choose this option.

set | ut_conp(255, 255, 0); /*
yel | ow */
set _ovlmask(1l); /* bit 0 active */

assign a color to atranslucent overlay table
void set_translucent(int table, int r, int g, int b)

This function programs the overlay
lookuptable. A color given by (r,g,b) can be
assigned to the translucent table given by table

r,g,b 1[0,255]
table 1[1,3]

3 translucent tables (table=1 .. table=3) are
available. The function programs the overlay
lookuptable such that it multiplies the upper 6
bits of image data with the color value given by
(r,0,b) (The value is then scaled down to 8
bits). The image modifed with this kind of
translucent table will look as if it was viewed
through a piece of colored glass.

111

© 2003 ... Vision Components GmbH, Ettlingen, Germany

112

Vision Components Software Documentation Version 5.0

bits 0 and 1 in overlay memory are used to
indicate if a given pixel should be modified with
on of the 3 translucent tables:

byte value function

0 no translucent display

1 table no. 1

2 table no. 2

3 table no. 3

>3 non translucent overlay has priority
over translucent table

The function returns -1 if table is out of range,

else 0.

example imge a = {0OL, 16, 16, 768};
a.st = (long)getvar(OVLY_START);
set(&a, 1); /* set to
1 */
set _translucent (1,0, 255, 255); /*
cyan transl. */

11.13.4 set_ovimask

set_ovimask set overlay mask register

synopsis void set_ovimask(int mask)

description This function programs the overlay mask

register. A value of mask=255 (Oxff) enables all
8 overlay bitplanes. A value of mask=0

disables all overlay bitplanes. Since in this
case the overlay is completely inactive, the
function disables also the transfer of video
data into the refresh memory by writing a 0 to
the system variable OVLY_ACTIVE.

Writing a value 1 0 to the mask registers with
this function will activate the transfer by writing
a lto OVLY_ACTIVE.

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 113

11.13.5init_LUT

init_ LUT init image data LUT to black-and-white
display

synopsis void init_LUT(void)

description This function programs the image data

lookuptable for black-and-white display.

11.14 Time Related Functions

c_time 114] convert system time -> extract time

c_date 114) convert system time -> extract date

c_timedate 1s) convert system time -> extract date

ltime |13 convert system time -> extract local time (macro)

Idate hus| convert system time -> extract local date (macro)

ltimedate M convert system time -> extract local date and time (me

gtiﬁ\na convert system time -> extract GMT time (macro)

gdate convert system time -> extract GMT date (macro)

gtimedate 7] convert system time -> extract GMT date and time
(macro)

x_timedate k7 calculate system time

xtimedate hus| calculate system time and store in system variable SE
(macro)

VC/RT supports a real-time clock with battery
backup. On power-up clock data is loaded into
the system variable SEC which represents the
number of seconds since 12:00 AM January 1,
1900. The variable SEC and the millisecond
counter MSEC are updated by the system
when it is running. Time is always stored
internally using Greenwich Meantime (GMT).
For calculation of local time two system
variables (TIMEZONE, DAYLIGHT) are used.
So, the first thing to do with a new camera
would always be to program the correct
timezone and daylight savings time flag. Then
check the system time using the time

© 2003 ... Vision Components GmbH, Ettlingen, Germany

114

Vision Components Software Documentation Version 5.0

command of the shell. The following functions
may be used to convert system time to broken-
down time or vice versa. Since the system
clock is an interrupt driven process, care
should be taken to assure that read-out of the
time system variable (system variables) is
performed only once for a given set of time
variables. Because the time related system
variables may change between two accesses,
corrupted data may be produced otherwise.

11.14.1 c_time

c_time convert system time -> extract time

synopsis void c_time(long zsec, int tz, int *sec, int *min,
int *hour)

description The function c_time() converts system time
passed to the function with the variable zsec
into seconds (*sec), minutes (*min), and hours
(*hour). The function outputs Greenwich
Meantime (GMT) for tz=0 or any other local
time for the given timezone (tz).

see also c_date Ei(), c_timedate E%()

11.14.2 c_date

c_date convert system time -> extract date

synopsis void c_date(long zsec, int tz, int *day, int
*month, int *year)

description The function c_date() converts system time
passed to the function with the variable zsec
into day (*day), month (*month), and year
(*year). The function outputs Greenwich
Meantime (GMT) for tz=0 or any other local
time for the given timezone (tz).

see also c_time Eh(), c_timedate m()

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.14.3 c_timedate

c_timedate

synopsis

description

see also

11.14.4 Itime

[time

synopsis

description

see also

11.14.5 Idate

[date

synopsis

description

see also

convert system time -> extract date

void c_timedate(long zsec, int tz, int *sec, int
*min, int *hour, int *day, int *month, int *year)

The function c_timedate() converts system
time passed to the function with the variable
zsec into seconds (*sec), minutes (*min), hours
(*hour), day (*day), month (*month), and year
(*year). The function outputs Greenwich
Meantime (GMT) for tz=0 or any other local
time for the given timezone (tz).

c_time [114(), c_date [14()

convert system time -> extract local time
(macro)

void Iltime(int *sec, int *min, int *hour)

The macro Itime() converts system time stored
in system variable SEC into seconds (*sec),
minutes (*min), and hours (*hour). The function
outputs local time with respect to system
variables TIMEZONE and DAYLIGHT.

Idate f11d(), gdate k()

convert system time -> extract local date
(macro)

void Idate(int *day, int *month, int *year)

The macro Idate() converts system time stored
in system variable SEC into day (*day), month
(*month), and year (*year). The function
outputs local time with respect to system
variables TIMEZONE and DAYLIGHT.

ltime [1:51(), gtime [115I()

115

© 2003 ... Vision Components GmbH, Ettlingen, Germany

116 Vision Components Software Documentation Version 5.0

11.14.6 Itimedate

[timedate convert system time -> extract local date
and time (macro)

synopsis void Itimedate(int *sec, int *min, int *hour, int
*day, int *month, int *year)

description The macro Itimedate() converts system time
stored in system variable SEC into seconds
(*sec), minutes (*min), hours (*hour), day
(*day), month (*month) and year (*year). The
function outputs local time with respect to
system variables TIMEZONE and DAYLIGHT.

note: Be sure to use this function whenever you
need a complete set of time and date
variables. Using the functions Itime() and
Idate() separately might give you an
inconsistent set of variables if time changes
from 23:59:59 to 00:00:00 of the next day
when you call the functions.

see also ltime [1551(), Idate hssl(), gtimedate [117]()
11.14.7 gtime
gtime convert system time -> extract GMT time
(macro)
synopsis void gtime(int *sec, int *min, int *hour)
description The macro gtime() converts system time stored

in system variable SEC into seconds (*sec),
minutes (*min), and hours (*hour). The function
outputs GMT time.

see also gdate Eé(), ltime Ea()

11.14.8 gdate

gdate convert system time -> extract GMT date
(macro)
synopsis void gdate (int *day, int *month, int *year)

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 117

description The macro gdate() converts system time
stored in system variable SEC into day (*day),
month (*month), and year (*year). The function
outputs GMT time.

see also ltime l1:51 (), gtime fuel()

11.14.9 gtimedate

gtimedate convert system time -> extract GMT date
and time (macro)

synopsis void gtimedate(int *sec, int *min, int *hour, int
*day, int *month, int *year)

description The macro gtimedate() converts system time
stored in system variable SEC into seconds
(*sec), minutes (*min), hours (*hour), day
(*day), month (*month) and year (*year). The
function outputs GMT time.

note: Be sure to use this function whenever you
need a complete set of time and date
variables. Using the functions gtime() and
gdate() separately might give you an
inconsistent set of variables if time changes
from 23:59:59 to 00:00:00 of the next day
when you call the functions.

see also gtime [18](), gdate bsl(), ltimedate [15()
11.14.1(x_timedate
X_timedate calculate system time

synopsis unsigned long x_timedate(int tz, int sec, int
min, int hour, int day, int month, int year)

description The function x_timedate() converts time and
date information into system time which it
outputs as return value.

The following parameters are passed to the
functions:

© 2003 ... Vision Components GmbH, Ettlingen, Germany

118 Vision Components Software Documentation Version 5.0

see also

11.14.1xtimedate

xtimedate

synopsis

description

parameters

tz timezone example: 1
sec second example: O
min minute example: 59
hour hour example: 14
day day example: 31
month month example: 12
year year example: 2001

system time is the number of seconds since

12:00 AM January 1, 1900

xtimedate 118 0

calculate system time and store in system

variable SEC (macro)

void xtimedate(int

int month, int year)

sec, int min, int hour, int day,

The macro xtimedate() converts time and date
information into system time which it stores in
the (long) system variable SEC.

System time is calculated with respect to
system variables TIMEZONE and DAYLIGHT.

The following parameters are passed to the
functions:

sec second example: 0O
min minute example: 59
hour hour example: 14
day day example: 31
month ~ month example: 12
year year example: 2001

system time is the number of seconds since 12:00 AM January
1, 1900

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

see also

11.14.1:RTC_set_time

RTC set_time
synopsis

description

example

see also

X_timedate()

set Real Time Clock
void RTC_set_time()

Programs Real Time Clock Chip according to
Systems variables set by xtimedate

time command of the shell

time_sopt()

i nt sec, m nute, hour, day, nont h, year;
di splay_timezone();

I ti medat e(&sec, & nut e, &our, &day, &ront h, &
year);
print("tine:
%02d: ¥92d: %92d\ n", hour, m nut e, sec) ;
print("date:
%02d/ ¥92d/ %92d\ n", nont h, day, year - 2000) ;
enter _tinezone();
ent er _dat e(&day, &ont h, &year);
enter _tine(&hour, & nut e, &sec) ;

xt i medat e(sec, m nut e, hour, day, nont h, year +2
000); [//set internal clock

setvar (LOABAT, 0); /* reset internal
| owbat */

RTC set _tine(); /* program clock chip */
}

xtimedate 119 0

11.15 TCP/IP Functions

Socket definition

type of socket ;

socket address

A socket is an abstraction that identifies an
endpoint and includes:

one of:

datagram (uses UDP)
stream (uses TCP)

identified by:

119

© 2003 ... Vision Components GmbH, Ettlingen, Germany

120 Vision Components Software Documentation Version 5.0

port number
IP address
It may have a remote endpoint .

Socket options Each socket has socket options, which define
characteristics of the socket, such as:

checksum calculations
Ethernet-frame characteristics
IGMP membership

non-blocking (nowait options)
push operations

sizes of send and receive buffers

timeouts

11.15.1 Datagram Sockets

Connectionless A datagram socket is connectionless in that an
application uses a socket without first
establishing a connection. Therefore, an
application specifies the destination address
and destination port number for each data
transfer. An application can prespecify a
remote endpoint for a datagram socket if
desired.

Unreliable transfer A datagram socket is used for datagram-based
data transfer, which does not acknowledge the
transfer. Because delivery is not guaranteed, a
higher layer is responsible for ensuring that the
data is acknowledged when necessary.

Block oriented A datagram socket is block oriented. This
means that when an application sends a block
of data, the bytes of data remain together. If an
application writes a block of data of, say, 100

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 121

bytes, VC/RT sends the data to the destination
in a single packet, and the destination receives
100 bytes of data.

11.15.2 Stream Sockets

Connection based A stream-socket connection is uniquely defined
by an address-port number pair for each of the
two endpoints in the connection. For example,
a connection to a Telnet server uses the local
IP address with a local port number, and the
server's |IP address with port number 23.

Reliable transfer A stream socket provides reliable, end-to-end
data transfer. To use stream sockets, a client
establishes a connection to a peer, transfers
data, and then closes the connection. Barring
physical disconnection, VC/RT guarantees that
all sent data is received in sequence.

Character oriented A stream socket is character oriented. This
means that VC/RT may split or merge bytes of
data as it sends the data from one protocol
stack to another. An application on a stream
socket may perform, for example, two
successive write operations of 100 bytes each,
and VC/RT may send the data to the
destination in a single packet. The destination
may then receive the data using, for example,
four successive read operations of 50 bytes
each.

11.15.3 Comparison of Datagram and Stream Sockets

Datagram socket Stream socket
Protocol UDP TCP
Connection based No Yes
Reliable transfer No Yes
Transfer mode Block Character

© 2003 ... Vision Components GmbH, Ettlingen, Germany

122 Vision Components Software Documentation Version 5.0

11.15.4 Creating and using Sockets

An application follows the following general steps to create and use
sockets. The

steps are summarized in the following diagrams and described in
subsequent

sections.

1. Create a new socket by calling socket(), indicating whether the
socket is a datagram socket or a stream socket.

2. Bind the socket to a local address by calling M@O.

3. |If the socket is a stream socket, assign a remote IP address by
doing one of the following:

3a. calling connect @()

3b. calling listen k=l() followed by accept a1 ()

4. Send data by calling sendto #s1l() for a datagram socket or
send @() for a stream socket.

5. Receive data by calling recvfrom @() for a datagram socket or
recv() for a stream socket.

6. When data transfer is finished, optionally destroy the socket by
calling shutdown @().

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

123

11.15.5 Diagram: Creating and Using Datagram Sockets (UDP)

socket()

bind()

sendto)
connect)

connect()

connect)

sendtof)

recyfromi) recy()
recv() recyfrom()
sendtol)
send()

Diagram Creating and using datagram sockets (UDP)

© 2003 ... Vision Components GmbH, Ettlingen, Germany

124 Vision Components Software Documentation Version 5.0

11.15.6 Diagram: Creating and Using Stream Sockets (TCP)

soclket]

Sround

connect()

Bound

listeni)

accept])

Connected

send()
recy()

Diagram 2 Creating and using stream sockets (TCP)

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 125

11.15.7 Creating Sockets

To create a socket, an application calls socket() and specifies
whether the socket is a datagram socket or a stream socket. The
function returns a socket handle, which the application subsequently
uses to access the socket.

11.15.8 Changing Socket Options

When VC/RT creates a socket, it sets all the socket options to
default values .

To change the value of certain options, an application must do so
before it binds the socket.

An application can change other options anytime.

All socket options and their default values are described in the
following

setsockopt 154 0.

11.15.9 Binding Sockets

After an application creates a socket and optionally changes or sets
socket

options, it must bind the socket to a local port number by calling
bind(). The

function defines the endpoint of the local socket by the local IP
address and port

number.

You can specify the local port number as any number, but if you
specify zero,

VC/RT chooses an unused port number. To determine the port
number that VC/RT

chose, call getsockname().

After the application binds the socket, how it uses the socket
depends on whether

the socket is a datagram socket or a stream socket.

11.15.1(Using Datagram Sockets
11.15.10.:Setting Datagram Socket Options

By default, VC/RT uses IGMP, and, by default, a socket is not in any
group. The
application can change the following socket options for the socket:

© 2003 ... Vision Components GmbH, Ettlingen, Germany

126 Vision Components Software Documentation Version 5.0

IGMP add membership
IGMP drop membership

send nowait
checksum bypass

11.15.10..Transferring Datagram Data

An application transfers data by making calls to sendto Eﬁ() or
send Béo and recvfrom Eﬁo

or recv m().
With each call, VC/RT either sends or receives one UDP datagram,
which contains up to 65,507 bytes of data.

If an application specifies more data, the functions return an error.

The functions send EE() and sendto Ei() return when the data is
passed to the Ethernet
interface.

The functions recvm() and recvfrom @() return when the socket

port receives the

packet or immediately if a queued packet is already at the port. The
receive

buffer should be at least as large as the largest datagram that the
application

expects to receive. If a packet overruns the receive buffer, VC/RT
truncates the

packet and discards the truncated data.

11.15.10.Buffering

By default, send @() and sendto Eﬁ() do not buffer outgoing data.

This behavior can be changed by using either the

OPT_SEND_NOWAIT s3] socket option, or the
VCRT_MSG_NONBLOCK send flag.

For incoming data, VC/RT matches the data, packet by packet, to
recv a0 () or

recvirom @() calls that the application makes. If a packet arrives
and a recv @() or

recvirom @() call is not waiting for data, VC/RT queues the packet.

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 127

11.15.10..Prescpecifying a peer

An application can optionally prespecify a peer by calling
connect [134)().

Prespecification has the following effect:

° send @() can be used to send a datagram to
the peer that is specified in the call to

connect(). Calls to send %() fail if connect()
has not been called previously.

° the behavior of sendto Eﬁ() is unchanged. ltis
not restricted to the specified peer.
. the function recv B&() or recvfrom @() returns

datagrams that have been sent by the
specified peer only

11.15.10.'Shutting Down Datagram Sockets

An application can shut down a datagram socket by calling
shutdown(). Before
the function returns:

. outstanding calls to recvfrom() return
immediately
° VC/RT discards received packets that are

queued for the socket and frees their buffers

When shutdown() returns, the socket handle is invalid, and the
application can no
longer use the socket.

11.15.11Using Stream Sockets
11.15.11..Changing Stream Socket Options

An application can change the value of certain stream-socket
options anytime.
For details, see under setsockopt @().

11.15.11.;Establishing Stream Socket Connections

An application can establish a connection to a stream socket in one
of these ways:

passively 2e by listening for incoming connection requests
(by calling listen 1]() followed by accept 1s1l())
actively bz by generating a connection request (by calling

© 2003 ... Vision Components GmbH, Ettlingen, Germany

128

Vision Components Software Documentation Version 5.0

connect())

11.15.11.2.1 Passive Establishing

By calling listen Ea(), an application can passively put an
unconnected socket in a listening state, after which the local socket
endpoint responds to a single incoming connection request.

After it calls listen E‘a(), the application calls accept Ei(), which
returns a new socket handle and lets the application accept the
incoming connection request.

Usually,the application calls accept @() immediately after it calls
Iisﬂ@(). The application

uses the new socket handle for all communication with the specified
remote endpoint until one or both endpoints close the connection.
The original socket remains in the listening state and continues to
be referenced by the initial socket handle that socket() returned.

The new socket that the listen-accept mechanism creates inherits
the socket options of the parent socket.

11.15.11.2.2 ActiveEstablishing

By calling connect(), an application can actively establish a stream-socket
connection to the remote endpoint that the function specifies. If the remote
endpoint is not in the listening state, connect() fails. Depending on the state of the
remote endpoint, connect() fails immediately or after the time that the connect-
timeout socket option specifies.

If the remote endpoint accepts the connection, the application uses the original
socket handle for all its communication with that remote endpoint, and VC/RT
maintains the connection until either or both endpoints close the connection.

11.15.11.:Getting Stream Socket Names

After an application establishes a stream-socket connection, it can get the
identifiers for the local endpoint (by calling getsockname()) and for the remote
endpoint (by calling getpeername()).

11.15.11..Sending Stream Data

An application sends data on a stream socket by calling send(). When the
function returns depends on the values of the send nowait
(OPT_SEND_NOWAIT) socket option. An application can change the value by
calling setsockopt().

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 129

11.15.11.4.1 send nowait (nonblocking 1/O)

send() returns FALSE (default) when TCP has buffered all data but not
necessarily sent it

send() returns TRUE Immediately (the result is a filled or partially
filled buffer)

11.15.11.!Receiving Stream Data

An application receives data on a stream socket by calling recv(). The application
passes the function a buffer, into which VC/RT places the incoming data. When
the function returns depends on the values of the receive-nowait
(OPT_RECEIVE_NOWAIT) and receive-push (OPT_RECEIVE_PUSH) socket
options. The application can change the values by calling setsockopt().

Receive nowait (non- |Receive push (delay recv() returns when:
blocking 1/0) transmission)
FALSE (default) TRUE (default) One of: «a push flag in
the data is received
esupplied buffer is
completely filled with
incoming data ereceive
timeout expires (the
default receive timeout is
an unlimited time)

FALSE (default) FALSE Either: ¢ supplied buffer
is completely filled with
incoming data ereceive
timeout expires

TRUE (ignored) Immediately after it polls
TCP for any data in the
internal receive buffer

11.15.11.1Buffering Data

The size of the VC/RT per-socket send buffer is determined by the socket option
that controls the size of the send buffer. VC/RT copies data into its send buffer
from the buffer that the application supplies. As the peer acknowledges the data,
VC/RT releases space in its buffer. If the buffer is full, calls to send() with the
send-push (OPT_SEND_PUSH @)socket option FALSE block until the remote
endpoint acknowledges some or all the data.

The size of the VC/RT per-socket receive buffer is determined by the socket
option that controls the size of the receive buffer. VC/RT uses the buffer to hold
incoming data when there are no outstanding calls to recv(). When the
application calls recv(), VC/RT copies data from its buffer to the buffer that the
application supplies, and, consequently, the remote endpoint can send more

© 2003 ... Vision Components GmbH, Ettlingen, Germany

130

Vision Components Software Documentation Version 5.0

data.

11.15.11.Improving the Throughput of Stream Data

¢ Include the push flag in sent data only where the flag is needed; that is, at the
end of a stream of data.

e Specify the largest possible send and receive buffers to reduce the amount of
work that the application and VC/RT do.

e When you call recv(), call it again immediately to reduce the amount of data that
VC/RT must copy into its receive buffer.

e Specify the size of the send and receive buffers to be multiples of the maximum
packet size.

e Call send m() with an amount of data that is a multiple of the maximum packet
size.

11.15.11.¢Shutting Down Stream Sockets

11.15.11.8.1 Shutting Down Gracefully

If the socket is to be shut down gracefully, VC/RT tries to deliver all the data that
is in its send buffer for the socket. As specified by the TCP specification, VC/RT
maintains the socket connection for four minutes after the remote endpoint

disconnects.

11.15.11.8.2 Shutting Down with an abort operation

If the socket is to be shut down with an abort operation:
oVC/RT immediately discards the socket and the socket's internal send and

receive buffers.
eThe remote endpoint frees its socket immediately after it sends all the data that

is in its send buffer.

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.15.1:Summary of Socket Functions

11.15.12.:accept

accept create a new stream socket to accept
incoming connections

synopsis uint_32 accept(uint_32 socket, sockaddr_in
*peeraddr, uint_16 *addrlen)

parameters

131

© 2003 ... Vision Components GmbH, Ettlingen, Germany

132

Vision Components Software Documentation Version 5.0

socket [IN]

Handle for the parent stream
socket

peer addr [OUT]

Pointer to where to place the
remote endpoint identifier

addrlen [IN/OUT]

[IN] Pointer to the length, in
bytes,of what peeraddr points to

[OUT] Full size, in bytes, of the
remote-endpoint identifier

The function accepts incoming connections by

The parent socket (socket) must

be in the listening state; it remains in the
listening state after each new socket is created

The new socket has the same local endpoint
and socket options as the parent; the remote
endpoint is the originator of the connection.

returns Handle for a new stream socket
VCRT_SOCKET_ERROR

traits Blocks until an incoming connection is
available

see also bind(), connect(), listen(), socket()

description
creating a new stream socket for the
connections.
from it.

example

ui nt _32 handl e;

uint_32 child_handl e;
sockaddr _in renote_sin;
uint_16 renote_addrlen;
uint _32 status;

status = listen(handle, 0);
if (status != VCRT_OK)
printf("\nError,
} else {

renmote_addrl en = sizeof (renmote_sin);
& enot e_sin,

chil d_handl e = accept (handl e,

listen() failed with error code % x", status);

& enot e_addrl en);

if (child_bhandle != VCRT_SOCKET_ERROR) ({
printf("\nConnection accepted from % x, port %",

renot e_sin. sin_addr,
} else {

status = VCRT _geterror(handle);
if (status == VCRT_K) {

renote_sin.sin_port);

printf("\nConnection reset by peer");

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 133
} else {
printf("Error, accept() failed with error code % x",
status);
}
}
}
11.15.12.)bind
bind bind the local address to the socket
synopsis uint_32 bind(uint_32 socket, sockaddr_in
*localaddr, uint_16 addrlen)
parameters
socket [IN] Socket handle for the socket to bind
localaddr [IN] Pointer to the local endpoint identifier to
which to bind socket (see description)
addrlen [IN] Length in bytes of what localaddr points to
returns VCRT _OK

Specific error code

traits Blocks, but VC/RT immediately services the
command and is replied to by the socket layer

see also socket()
description
Field in sockaddr_in: Must have this input value:
sin_family AF_INET
sin_port One of: elocal port number
for the socket <0 (To
determine the port number
that VC/RT chooses, call
getsockname())
sin_addr One of: ¢IP address that
was previously bound
*INADDR_ANY

Usually, TCP/IP servers bind to INADDR_ANY,
so that one instance of the server can service

© 2003 ... Vision Components GmbH, Ettlingen, Germany

134

Vision Components Software Documentation Version 5.0

all IP addresses.

example: Bind a socket to port nhumber 2010.

ui nt _32 sock;
sockaddr _in | ocal _sin;
uint_32 result;

sock = socket (AF_| NET, SOCK_DGRAM 0):

if (sock == VCRT_SOCKET_ERROR)
{

printf("\nError, socket create failed");

return;

menset ((char *) & ocal _sin, O,
local _sin.sin_famly = AF_I NET;
| ocal _sin.sin_port = 2010;

si zeof (1 ocal _sin));

| ocal _sin.sin_addr.s _addr = | NADDR ANY;

result = bind(sock, & ocal_sin,
if (status != VCRT_OK)

si zeof (sockaddr _in));

printf("\nError, bi_nd() failed with error code % x",

11.15.12..connect

result);

connect Connect the stream socket to the remote
endpoint

synopsis uint_32 connect(uint_32 socket, sockaddr_in

*destaddr, uint_16 addrlen)

parameters

socket [IN]

Handle for the stream socket to connect

destaddr [IN]

Pointer to the remote endpoint identifier

addrlen [IN]

Length in bytes of what destaddr points to

returns VCRT _OK (success)
Specific error code (failure)

traits Blocks until the connection is accepted or until
the connection-timeout socket option expires

see also accept @(), bind @(), etsockopt @(),
listen |13d(), setsockopt |isd(), socket_dgram i (),

socket_stream

()

description Stream socket :
The function fails if the remote endpoint rejects

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 135

the connection request, which it may do
immediately is unreachable, which causes the
connection timeout to expire

If the function is successful, the application can
use the socket to transfer data.

Datagram socket:

The function connect() has the following
effects on a datagram socket:

send() can be used instead of sendto() to send
a datagram to destaddr the behavior of
sendto() is unchanged: it can still be used to
send a datagramto any peer the socket
receives datagrams from destaddr only
connect () may be used multiple times.
Whenever connect () is called, the current
endpoint is replaced by the new one.

A connection can be dissolved by calling
connect() and specifying an address family of
AF_UNSPEC. This dissolves the association,
places the socket inthe bound state, and
returns the error code
VCRTERR_SOCK_INVALID_AF.

Should connect() fail, the socket will be in a
bound state (no remote endpoint).

example: Stream socket

ui nt _32 sock;

ui nt_32 chil d_handl e;

sockaddr _in renote_sin;

uint_16 renote_addrlen = sizeof (sockaddr _in);
uint_32 result;

/* Connect to 192.203.0.83, port 2011: */

menset ((char *) & enote_sin, 0, sizeof(sockaddr_in));
remote_sin.sin_famly = AF_I NET;

renote_sin.sin_port = 2011;

renpote_sin.sin_addr.s_addr = OxCOA80001; /* 192.168.0.1 */
result = connect(sock, & enote sin, renote_addrlen);

if (result !'= VCRT_OK)

printf("\nError--connect() failed with error code %x."
result);

} else {

printf("\nConnected to % x, port %d.",
renote_sin.sin_addr.s_addr, renote_sin.sin_port);

}

© 2003 ... Vision Components GmbH, Ettlingen, Germany

136

Vision Components Software Documentation Version 5.0

11.15.12..ENET_get_stats

ENET_get_stats get a pointer to the Ethernet statistics that
VCRT collects

synopsis ENET_STATS *ENET_get_stats(enet_handle
*handle)

parameters handle [IN] Pointer to the Ethernet handle

returns Pointer to an ENET_STATS structure

traits

see also ICMP_stats(), IP_stats(), IPIF_stats(),
TCP_stats(), UDP_stats(), ENET_STATS

description

example

ENET_STATS *enet;
_enet _handl e ehandl e;

enet = ENET get stats();
printf("\n% Ethernet packets received", enet->ST_RX TOTAL);

11.15.12.)getpeername

getpeername get the remote-endpoint identifier of a
socket
synopsis uint_32 getpeername(uint_32 socket,

sockaddr_in *name, uint_16 *namelen)

Parameters
socket [IN] Handle for the stream socket
name [OUT] Pointer to a placeholder for the remote-
endpoint identifier of the socket
namelen [IN/OUT] [IN] Pointer to the length, in bytes, of
what name points to
[OUT] Full size, in bytes, of the remote-
endpoint identifier
returns VCRT_OK (success)
Specific error code (failure)
traits Blocks, but the command is immediately

serviced and replied to

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 137

see also

description

example
ui nt _32 handl e;

accept @(), connect @(), getsockname @(),
socket()

The function returns the remote endpoint for
the socket as was determined by connect @4()
or accept @().

sockaddr _in renote_sin;

ui nt_32 status;

uint_16 nanel en;

namel en = sizeof (sockaddr _in);
status = get peernane(handle, & enote sin, &nanelen); if (status !=

VCRT_OK)

{
printf("\nError,

status);
} else {

getpeernane() failed with error code % x",

printf("\nRenote address fanmily is %", renote_sin.sin_famly);
printf("\nRenote port is %", renbte_sin.sin_port);
printf("\nRenote |IP address is %x",
renote_sin.sin_addr.s_addr);

}

11.15.12.igetsockname

getsockname

synopsis

parameters

returns

traits

Get the local-endpoint identifier of the
socket

uint_32 getsockname(uint_32
socket,sockaddr_in *name, uint 16 *namelen)

socket [IN] Socket handle

name [OUT] Pointer to a placeholder for the local-
endpoint identifier of the socket

namelen [IN/OUT] [IN] Pointer to the length, in bytes, of
what name points to

[OUT] Full size, in bytes, of the remote-
endpoint identifier

VCRT_OK (success)
Specific error code (failure)

Blocks, but the command is immediately
serviced and replied to

© 2003 ... Vision Components GmbH, Ettlingen, Germany

138

Vision Components Software Documentation Version 5.0

see also bind Eﬁo, getpeername Eé(), socket()
description The function returns the local endpoint for the

socket as was defined by bind @().

example

ui nt _32 handl e;
sockaddr _in |ocal _sin;
uint _32 status;

uint _16 nanel en;

héﬁel en = sizeof (sockaddr_in);

status = getsocknane(handl e, & ocal _sin, &nanelen);
if (status != VCRT_OK)

{

printf("\nError, getsocknane() failed with error code % x",
status);

} else {

printf("\nLocal address famly is %", local _sin.sin famly);
printf("\nLocal port is %", local_sin.sin_port);
printf("\nLocal |IP address is % x", local _sin.sin_addr.s_addr);

11.15.12.’getsockopt

getsockopt Get the value of the socket option
synopsis uint_32 getsockopt(uint_32 socket, int_32
level, uint_32 optname, pointer optval, uint 32
*optlen)
parameters
socket [IN] Socket handle
level [IN] Protocol level at which the option resides
optname [IN] Option name (see description)
optval [IN/OUT] Pointer to the option value
optlen [IN/OUT] [IN] Size of optval in bytes
[OUT] Full size, in bytes, of the option
value
returns VCRT_OK (success)

Specific error code (failure)

traits Blocks, but the command is immediately
serviced and replied to

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

see also

description

11.15.12.{listen

listen

synopsis

parameters

returns

traits

see also

description

example

11.15.12.%YCRT_ping
VCRT_ping

synopsis

parameters

setsockopt s 0

An application can get all socket options for all
protocol levels. For a complete description of
socket options and protocol levels, see

setsockopt 4] 0.

put the stream socket into the listening
state

uint_32 listen(uint_32 socket, uint_16 backlog)

139

socket [IN] Socket handle

backlog [IN] Ignored

VCRT_OK (success)
Specific error code (failure)

Blocks, but the command is immediately
serviced and replied to

accept 11311(), bind 33(), socket()
After the application calls listen(), it should call
accept() to attach new sockets to the incoming

requests.

See accept Eﬁ().

send an ICMP echo-request packet to the IP
address and wait for a reply

uint_32 VCRT_ping(ip_address address,
uint_32 *timeout, uint 16 id)

© 2003 ... Vision Components GmbH, Ettlingen, Germany

140 Vision Components Software Documentation Version 5.0

returns

11.15.12.recv

recv

synopsis

parameters

returns

traits

VCRT_OK (success)
Error code (failure)

provide VCRT with the buffer in which to
place incoming stream data

int_32 recv(uint_32 socket, char *buffer,
uint_32 buflen, uint_32 flags)

Number of bytes received (success)
VCRT_ERROR (failure)

May block, but the command is immediately
serviced

If non-blocking 1/O is disabled on the socket,
the function blocks until data satisfying the
receive-push socket option is received

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 141

If non-blocking 1/0 is enabled on the socket,
the command is immediately replied to,
returning whatever incoming data is buffered

internally
see also accept Eﬁ(), bind @(), getsockopt @(),

listen 138 (), VCRT_geterror k4l (), send el (),
setsockopt @(), shutdown @(), socket()

description When the flags parameter is
VCRT_MSG_PEEK, the same datagram is
received the next time recv() or recvirom() is
called.

If the function returns VCRT_ERROR, the
application can call VCRT_geterror() to
determine the reason for the error.

Stream socket

If the receive-nowait socket option is TRUE,
VCRT immediately copies internally buffered
data (up to buflen bytes) into the buffer (at
buffer), and recv() returns. If the receive-wait
socket option is TRUE, recv() blocks until the
buffer is full or the receive-push socket option
is satisfied.

If the receive-push socket option is TRUE, a
received TCP push flag causes recv() to return
with whatever data has been received. If the
receive-push socket option is FALSE, VCRT
ignores incoming TCP push flags, and recv()
returns when enough data has been received
to fill the buffer.

Datagram socket

The recv() function on a datagram socket is
identical to recvfrom() with NULL fromaddr and
fromlen pointers. The recv() function is
normally used on a connected socket.

example: Stream socket
ui nt _32 handl e;

char buffer[20000];
uint _32 count;

count = recv(handl e, buffer, 20000, 0);
if (count == VCRT_ERROR)

© 2003 ... Vision Components GmbH, Ettlingen, Germany

142 Vision Components Software Documentation Version 5.0

érintf("\nError, recv() failed with error code % x",
VCRT _geterror (handl e));

} else {

i)rintf("\nRecei ved % d bytes of data.", count);

11.15.12.recvfrom

recvfrom provide VC/RT with the buffer in which to
place incoming datagram socket data

synopsis int_32 recvfrom(uint_32 socket, char *buffer,
uint_32 buflen, uint_32 flags, sockaddr_in
*fromaddr, uint 16 *fromlen)

parameters

returns Number of bytes received (success)
VCRT_ERROR (failure)

traits Blocks until data is available or an error occurs

see also bind @(), VCRT_geterror Ba(), sendto @(),

socket()

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 143

description If a remote endpoint has been specified with
connect(), only datagrams from that source will
be received.

When the flags parameter is
VCRT_MSG_PEEK, the same datagram is
received the next time recv() or recvirom() is
called.

If fromlen is NULL, the socket address is not
written to fromaddr. If fromaddr is NULL and
the value of fromlen is not NULL, the result is
unspecified.

If the function returns VCRT_ERROR, the
application can call VCRT_geterror @() to
determine the reason for the error.

example: Receive up to 500 bytes of data.
ui nt _32 handl e;

sockaddr _in renote_sin;

uint 32 count;

char ny_buffer[500];

uint_16 renote_len = sizeof (renote_sin);

éb.unt = recvfrom(handl e, ny_buffer, 500, O,
& enote_sin, &enote |en);

if (count == VCRT_ERROR)
printf("\nrecvfrom) failed with error % x",
VCRT_geterror(handle));

} else {
printf("\nReceived %d bytes of data.", count);
}

11.15.12.VCRT _attachsock

VCRT_attachsock take ownership of the socket

synopsis uint_32 VCRT attachsock(uint_32 socket)
parameters socket [IN] Socket handle
returns new socket handle (success)

VCRT_SOCKET_ERROR (failure)

traits Blocks, although the command is serviced and
responded to immediately

see also accept @(), VCRT_detachsock Bﬁo
description The function adds the calling task to the

© 2003 ... Vision Components GmbH, Ettlingen, Germany

144 Vision Components Software Documentation Version 5.0

socket's list of owners.

example A main task loops to accept connections.
When it accepts a connection, it creates a child
task to manage the connection: it relinquishes
control of the socket by calling
VCRT _detachsock() and then creates the child
with the accepted socket handle as the initial
parameter.

whi | e (TRUE)

/* | ssue ACCEPT:. */

TELNET accept _skt =

accept (TELNET | i sten_skt, &peer_addr,
&addr | en);

i f (TELNET accept skt !=
VCRT_SOCKET_ERROR)

/* Transfer the socket and create the

child task to | ook after the socket :
*/
i f (VCRT_detachsock(TELNET _accept _skt)
== VCRT_K)
{
child task =

(_task_create(LOCAL_I D,
CHI LD), TELNET accept _skt);
}

el se
printf("\naccept() failed, error

0x9% x",
VCRT_get error (TELNET accept skt));

}
}
}

11.15.12.VCRT_detachsock

VCRT_detachsock relinquish ownership of the socket
synopsis uint 32 VCRT _detachsock(uint_32 socket)

parameters socket [IN] Socket handle from socket(),
accept 121](), or VCRT_attachsock @()

returns VCRT_OK (success)
Specific error code (failure)

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

traits

see also

description

example

11.15.12.VCRT _geterror

VCRT_geterror

synopsis
parameters

returns

traits
see also

description

example

11.15.12.VCRT _selectall

VCRT_selectall

synopsis

Blocks, although the command is serviced and
responded to immediately

accept @(), VCRT_attachsock BE(), socket()

The function removes the calling task from the
socket™s list of owners.

See VCRT_attachsock @().

Get the reason why an VC/RT function
returned an error for the socket

uint 32 VCRT _geterror(uint_32 socket)

socket [IN] Socket handle

VCRT_OK (no socket error)
Last error code for the socket

Does not block
accept(), recv(), recvirom(), send(), sendto()

Use the function if accept() returns
VCRT_SOCKET_ERROR or any of the
following functions returns VCRT_ERROR:

recy ()
recvirom E?()
send ()
sendto @()

See accept h1l(), recv [uol(), recvfrom he(),
send m(), and sendto @().

wait for activity on any socket that the
caller owns

uint_32 VCRT _selectall(uint_32 timeout)

145

© 2003 ... Vision Components GmbH, Ettlingen, Germany

146 Vision Components Software Documentation Version 5.0

parameters
timeout [IN] One of:
Maximum number of milliseconds to wait
for activity
0 (wait indefinitely)
-1 (do not block)
returns Socket handle (activity was detected; see
description)
0 (timeout expired)
VCRT_SOCKET_ERROR (error)
traits If timeout is not -1, blocks until activity is
detected on any socket that the calling task
owns
see also VCRT_selectset()
description Activity consists of any of the following.
This type of socket: |Receives:
Unbound datagram Datagrams
Listening stream Connection requests
Connected stream Data or Shutdown requests that are
initiated by the remote Endpoint
Example Echo data on TCP port number 7.

int_32 servsock;

i nt _32 connsock;

int_32 status;

SOCKET_ADDRESS STRUCT addr peer;

uint_16 addrl en;

char buf[500];

int_32 count;

uint_32 error

/* create a stream socket and bind it to port 7: */
error = listen(servsock, 0);

if (error !'= VCRT_OK) {

printf("\nlisten() failed, status = %", error);
return;

%Or (i) A

connsock = VCRT sel ectall (0);

if (connsock == VCRT_SOCKET_ERROR) {
printf("\nVCRT selectall () failed!'");

} else if (connsock == servsock)

status = accept (servsock, &addrpeer, &addrlen);
if (status == VCRT_SOCKET_ERROR)

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 147

printf("\naccept() failed!");

} else {

count = recv(connsock, buf, 500, 0);
if (count <= 0)

shut down(connsock, FLAG CLOSE_TX);

el se

send(connsock, buf, count, 0);

}

}

11.15.12.VCRT _selectset

VCRT _selectset wait for activity on any socket in the set of
sockets
synopsis uint 32 VCRT_selectset(pointer sockset,

uint_32 count, uint 32 timeout)

parameters
sockset [IN] Pointer to an array of sockets
count [IN] Number of sockets in the array
timeout [IN] One of:
Maximum number of milliseconds to wait
for activity
0 (wait indefinitely)
-1 (do not block)
returns Socket handle (activity was detected)
0 (timeout expired)
VCRT_SOCKET_ERROR (error)
traits If timeout is not -1, blocks until activity is
detected on at least one of the sockets in the
set
see also VCRT_selectall m()
description For the description of what constitutes activity,
see VCRT_selectall().
Example Echo UDP data that is received on ports

2010, 2011, and 2012.
int_32 socklist[3];
sockaddr _in local _sin;
uint_32 result;

menmset ((char *) & ocal sin, 0, sizeof(local sin)):
local _sin.sin_famly = AF_I NET;

© 2003 ... Vision Components GmbH, Ettlingen, Germany

148 Vision Components Software Documentation Version 5.0

11.15.12.

| ocal _sin.sin_addr.s_addr = | NADDR_ANY

[ocal _sin.sin_port = 2010;

socklist[0] = socket(AF_I NET, SOCK DGRAM 0);

result = bind(socklist[0], & ocal _sin, sizeof
(sockaddr _in));

[ocal _sin.sin_port = 2011

socklist[1] = socket(AF_I NET, SOCK DGRAM 0);

result = bind(socklist[1], & ocal _sin, sizeof
(sockaddr _in));

[ocal _sin.sin_port = 2012;

socklist[2] = socket(AF_I NET, SOCK DGRAM 0);

result = bind(socklist[2], & ocal_sin, sizeof
(sockaddr _in));

while (TRUE) ({

sock = VCRT sel ectset(socklist, 3, 0);
rien = sizeof (raddr);
l ength = recvfron(sock, buffer, BUFFER SIZE, 0, &raddr,

&l en);
sendt o(sock, buffer, length, 0, &addr, rlen);

}

send

send Send data on the stream socket, or on a
datagram socket for which a remote
endpoint has been specified.

synopsis int_ 32 send(uint_32 socket, char *buffer,
uint_32 buflen, uint_32 flags)

parameters

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 149

returns Number of bytes sent (success)
VCRT_ERROR (failure)

traits May block until data is placed in the socket's
send buffer, whose size is set by setsockopt()

see also accept @(), bind an, etsockopt @(),

© 2003 ... Vision Components GmbH, Ettlingen, Germany

150

Vision Components Software Documentation Version 5.0

listen Ea(), recv @(), VCRT_qgeterror @(),
setsockopt @(), shutdown @O, socket()

description If the function returns VCRT_ERROR, the
application can call VCRT_geterror @() to
determine the cause of the error.

Stream socket

VC/RT packetizes the data (at buffer) into TCP
packets and delivers the packets reliably and
sequentially to the connected remote endpoint.

If the send-nowait socket option is TRUE,
VC/RT immediately copies the data into the
internal send buffer for the socket, to a
maximum of buflen. The function then returns.

If the send-push socket option is TRUE, VC/RT
appends a push flag to the last packet that it
uses to send the buffer; all data is sent
immediately, taking into account the
capabilities of the remote endpoint buffer.

Datagram socket If a remote endpoint has
been specified using connect(),

send m() is identical to sendto Ei() using the
specified remote endpoint. If a remote
endpoint has not been specified, m@o
returns VCRT_ERROR.

The flags parameter can be used for datagram
sockets only. The override is temporary and

lasts for the current call to send @() only.

Setting flags to VCRT_MSG_NOLOOP is
useful when broadcasting or multicasting a
datagram to several destinations. When flags
is set to VCRT_MSG_NOLOOP, the datagram
is not duplicated for the local host interface.

example: Stream socket
ui nt _32 handl e;

char buffer[20000];
uint _32 count;

count = send(handl e, buffer, 20000, 0):

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

if (count == VCRT_ERROR)
printf("\nError, send() failed with error code % x",
VCRT_geterror(handle));
11.15.12.'sendto

sendto send data on the datagram socket

synopsis int_ 32 sendto(uint_32 socket, char *buffer,
uint_32 buflen, uint_16 flags, sockaddr_in
*destaddr, uint_16 addrlen)

parameters

151

© 2003 ... Vision Components GmbH, Ettlingen, Germany

152 Vision Components Software Documentation Version 5.0

destaddr [IN] Remote endpoint identifier to which to
send

the data

addrlen [IN] Number of bytes pointed to by destaddr

returns Number of bytes sent (success)

VCRT_ERROR (failure)

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

traits Blocks, but the command is immediately
serviced and replied to

see also setsockopt @(), bind @(), recvfrom @(),
VCRT_qgeterror @(), socket()

description The function sends the data (at buffer) as a
UDP datagram to the remote endpoint (at
destaddr).

This function can also be used when a remote
endpoint has been prespecified through
connect(). The datagram is sent to destaddr
even if it is different than the prespecified
remote endpoint.

If the socket address has been prespecified,
you can call sendto() with destaddr set to
NULL and addrlen equal to zero: this
combination sends to the prespecified

address. Calling sendto() with destaddr set to
NULL and addrlen equal to zero without first
having prespecified the destination will result in
an error.

The flags parameter can be used for datagram
sockets only. The override is temporary and
lasts for the current call to sendto() only.
Setting flags to VCRT_MSG_NOLOOP is
useful when broadcasting or multicasting a
datagram to several destinations. When flags
is set to VCRT_MSG_NOLOOP, the datagram
is not duplicated for the local host interface.

If the function returns VCRT_ERROR, the
application can call VCRT_geterror Eﬁo to
determine the cause of the error.

Example Send 500 bytes of data to IP address

192.203.0.54, port number 678.
ui nt _32 handl e;
sockaddr _in renote_sin;
uint_32 count;
char my_buffer[500];

for (i=0: i < 500: i++) ny buffer[i]= (i & Oxff):
menset ((char *) & enpte sin, 0, sizeof(sockaddr _in));
renote_sin.sin_famly = AF_| NET;

153

© 2003 ... Vision Components GmbH, Ettlingen, Germany

154

Vision Components Software Documentation Version 5.0

renote_sin.sin_port
renot e_sin.sin_addr.s_addr

= 678;

= 0xC0CB0036;

count = sendto(handl e, ny_buffer, 500, 0, & enpte_sin,
si zeof (sockaddr _in));

if (count

I = 500)

printf("\nsendto() failed with count
count, VCRT geterror(handle));

11.15.12.setsockopt

setsockopt

synopsis

parameters

returns

traits

see also

Description

% d and error 9% x",

set the value of the socket option

uint_32 setsockopt(uint_32 socket, uint_32
level, uint_32 optname, pointer optval, uint_32

optlen)

socket [IN] One of: If level is anything but SOL_NAT,
handle for the socket whose option is to
be changed If level is SOL_NAT, socket is
ignored

level [IN] Protocol level at which the option resides;

one of:

SOL_IGMP

SOL_LINK

SOL_NAT (not available)
SOL_SOCKET
SOL_TCP SOL_UDP

optname [IN]

Option name; see description

optval [IN]

Pointer to the option value

optlen [IN]

Number of bytes that optval points to

VCRT_OK (success)

Specific error code (failure)

Blocks, but the command is immediately

serviced and replied

to

bind @(), getsockopt @(),ip_mreq, nat_ports,

nat_timeouts

You can set most socket options by calling
setsockopt(). However, the following options
cannot be set; you can use them only with

getsockopt 159 0:

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 155

IGMP get membership

receive Ethernet 802.1Q priority tags
receive Ethernet 802.3 frames
socket error

socket type

Settable options have default values. If you
want to change the value of some settable
options, you must do so before you bind the
socket.

For other settable options, you can change the
value anytime after the socket is created.

NOTE Some options can be temporarily overridden
for datagram sockets. For more information,

see send m() and sendto Eﬁ().

11.15.12.19.1 Option Names

11.15.12.19.1.1 OPT_CHECKSUM_BYPASS

Checksum bypass

Option name OPT_CHECKSUM_BYPASS (can be
overridden)

Protocol level SOL_UDP

Values TRUE

VC/RT sets to 0 the checksum field of sent
datagram packets, and the generation of
checksums is bypassed

FALSE
VC/RT generates checksums for sent
datagram packets

Default value FALSE
Change Before bound
Socket type Datagram
Comments

11.15.12.19.1.2 OPT_CONNECT_TIMEOUT

Connect timeout

Option name OPT_CONNECT_TIMEOUT
Protocol level SOL_TCP
Values >= 180,000 VC/RT maintains the connection

© 2003 ... Vision Components GmbH, Ettlingen, Germany

156

Vision Components Software Documentation Version 5.0

for this number of milliseconds

Default value 480,000 (8 min)

Change Before bound

Socket type Stream

Comments Connect timeout corresponds to R2 (as

defined in RFC 793) and is sometimes called
the hard timeout. It indicates how much time
VC/RT spends attempting to establish a
connection before it gives up. If the remote
endpoint does not acknowledge a sent
segment within the connect timeout (as would
happen if a cable breaks, for example), VC/RT
shuts down the socket connection, and all
function calls that use the connection return.

11.15.12.19.1.3 VCRT_SO_IGMP_ADD_MEMBERSHIP

IGMP add membership

Option name VCRT_SO_IGMP_ADD_MEMBERSHIP
Protocol level SOL_IGMP

Values

Default value Not in a group

Change Anytime

Socket type Datagram

Comments IGMP must be in the VC/RT protocol table.
Example

To join a multicast group:

ui nt _32 sock;

struct ip_nreq group;
group.inr_multiaddr =

mul ti cast i p_address;
group.inmr_interface = |ocal _i p_address;
error = setsockopt(sock, SOL_| GWP,
VCRT_SO | GW_ADD MEMBERSHI P,

&gr oup, si zeof (group)) ;

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 157

11.15.12.19.1.4 VCRT_SO_IGMP_DROP_MEMBERSHIP

IGMP drop membership

Option name VCRT_SO_IGMP_DROP_MEMBERSHIP
Protocol level SOL_IGMP

Values

Default value Not in a group

Change After the socket is created

Socket type Datagram

Comments IGMP must be in the VC/RT protocol table.
Example

To leave a multicast group:

ui nt 32 sock;

struct ip_nreq group;

group.inmr_multiaddr = nulticast_ip_address;

group.inr_interface = |ocal _i p_address;

error =
set sockopt (sock, SOL_I GwP, VCRT_SO_| GWP_DROP
_MEMBERSH! P,

&gr oup, si zeof (group));

11.15.12.19.1.5 VCRT_SO_IGMP_GET_MEMBERSHIP

IGMP get membership

Option name VCRT_SO_IGMP_GET_MEMBERSHIP

Protocol level SOL_IGMP

Values

Default value Not in a group

Change (use with getsockopt() only; returns value in
optval)

Socket type Datagram

Comments

11.15.12.19.1.6 OPT_RETRANSMISSION_TIMEOUT

Initial retransmission timeout

Option name OPT_RETRANSMISSION_TIMEOUT
Protocol level SOL_TCP

Values >= 15 ms (See comments)

Default value 3000 (3 seconds)

Change Before bound

Socket type Stream

Comments Value is a first, best guess of the round-trip

time for a stream socket packet. VC/RT
attempts to resend the packet if it does not
receive an acknowledgment in this time. After
a connection is established, VC/RT determines

© 2003 ... Vision Components GmbH, Ettlingen, Germany

158

Vision Components Software Documentation Version 5.0

the retransmission timeout, starting from this
initial value.

If the initial retransmission timeout is not longer
than the end-to-end acknowledgment time
expected on the socket, the connect timeout
will expire prematurely.

11.15.12.19.1.7 OPT_KEEPALIVE

Keep-alive timeout

Option name OPT_KEEPALIVE
Protocol level SOL_TCP
Values 0

VC/RT does not probe the remote endpoint

non-zero
If the connection is idle, VC/RT periodically
probes the remote endpoint, an action that
detects whether the remote endpoint is still

present
Default value 0 minutes
Change Before bound
Socket type Stream
Comments The option is not a standard feature of the

TCP/IP specificationand generates
unnecessary periodic network traffic

11.15.12.19.1.8 OPT_MAXRTO

Maximum retransmission timeout

Option name OPT_MAXRTO
Protocol level SOL_TCP
Values non-zero

Maximum value for the retransmission timers
exponential backoff

0
VC/RT uses the default value, which is 2 times

the maximum segment lifetime (MSL).
Since the MSL is 2 minutes, the MTO is 4

minutes.
Default value 0 milliseconds
Change Before bound
Socket type Stream
Comments The retransmission timer is used for multiple

retransmissions of a segment.

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

No Nagle algorithm

Option name
Protocol level
Values

Default value
Change
Socket type
Comments

11.15.12.19.1.10 OPT_RBSIZE

Receive-buffer
Option name
Protocol level
Values

Default value
Change
Socket type
Comments

size

11.15.12.19.1.9 OPT_NO_NAGLE_ALGORITHM

OPT_NO_NAGLE_ALGORITHM

SOL_TCP
TRUE

VC/RT does not use the Nagle algorithm to
coalesce short segments

FALSE

To reduce network congestion, VC/RT uses
the Nagle algorithm (defined in RFC 896) to
coalesce short segments

FALSE

Before bound

Stream

If an application intentionally sends short
segments, it can improve efficiency by setting
the option to TRUE

OPT_RBSIZE

SOL_TCP

Recommended to be a multiple of the
maximum segment size, where the multiple is
at least three

4380 bytes

Before bound

Stream

When the socket is bound, VC/RT allocates a
receive buffer of the specified number of bytes,
which controls how much received data VC/RT
can buffer for the socket

11.15.12.19.1.11 VCRT_SO_LINK_RX_8021Q_PRIO

Receive Ethernet 802.1Q priority tags

Option name
Protocol level
Values

VCRT_SO_LINK RX 8021Q PRIO
SOL_LINK

-1

The last received frame did not have an
Ethernet 802.1Q priority tag

0..7
The last received frame had an Ethernet

159

© 2003 ... Vision Components GmbH, Ettlingen, Germany

160 Vision Components Software Documentation Version 5.0

802.1Q priority tag with the specified priority
Default value

Change (use with getsockopt() only; returns value in
optval)

Socket type Stream (Ethernet)

Comments Returned information is for the last frame that

the socket received

11.15.12.19.1.12 VCRT_SO_LINK_RX_8023

Receive Ethernet 802.3 frames

Option name VCRT_SO_LINK_RX 8023
Protocol level SOL_LINK
Values TRUE

The last received frame was an 802.3 frame

FALSE
The last received frame was an Ethernet I
frame

Default value

Change (use with getsockopt() only; returns value in
optval)

Socket type Stream (Ethernet)

Comments Returned information is for the last frame that

the socket received

11.15.12.19.1.13 OPT_RECEIVE_NOWAIT

Receive nowait

Option name OPT_RECEIVE_NOWAIT
Protocol level SOL_TCP
Values TRUE

recv() returns immediately, regardless of
whether there is data to be received

FALSE
recv() waits until there is data to be received
Default value FALSE
Change Anytime
Socket type Stream
Comments
11.15.12.19.1.14 OPT_RECEIVE_PUSH
Receive push
Option name OPT_RECEIVE_PUSH
Protocol level SOL_TCP

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

Values

Default value
Change
Socket type
Comments

Receive timeout
Option name
Protocol level
Values

Default value
Change
Socket type
Comments

11.15.12.19.1.16 OPT_TBSIZE

Send-buffer size
Option name
Protocol level
Values

Default value
Change
Socket type
Comments

TRUE

recv() returns immediately if it receives a push
flag from the remote endpoint, even if the
specified receive buffer is not full

FALSE

recv() ignores push flags and returns only
when its buffer is full or if the receive timeout
expires

TRUE

Anytime

Stream

11.15.12.19.1.15 OPT_RECEIVE_TIMEOUT

OPT_RECEIVE_TIMEOUT

SOL_TCP

0

VC/RT waits indefinitely for incoming data
during a call to recv()

non-zero
VC/RT waits for this number of milliseconds for
incoming data during a call to recv()

0 milliseconds

Anytime

Stream

When the timeout expires, recv() returns with
whatever data that has been received

OPT_TBSIZE

SOL_TCP

Recommended to be a multiple of the
maximum segment size, where the multiple is
at least three

4380 bytes

Before bound

Stream

When the socket is bound, VC/RT allocates a
send buffer of the specified number of bytes,
which controls how much sent data VC/RT can
buffer for the socket

161

© 2003 ... Vision Components GmbH, Ettlingen, Germany

162

Vision Components Software Documentation Version 5.0

11.15.12.19.1.17 VCRT_SO_LINK_TX_8021Q_PRIO

Send Ethernet 802.1Q priority tags

Option name VCRT_SO_LINK_TX_8021Q_PRIO
Protocol level SOL_LINK
Values -1
VC/RT does not include Ethernet 802.1Q
priority tags
0-7

VC/RT includes Ethernet 802.1Q priority tags
with the specified priority

Default value -1

Change Anytime

Socket type Stream (Ethernet)
Comments

11.15.12.19.1.18 VCRT_SO_LINK_TX_8023

Send Ethernet 802.3 frames

Option name VCRT_SO_LINK_TX 8023
Protocol level SOL_LINK
Values TRUE

VC/RT sends 802.3 frames

FALSE
VC/RT sends Ethernet Il frames
Default value FALSE
Change Anytime
Socket type Stream (Ethernet)
Comments Returns information for the last frame that the

socket received

11.15.12.19.1.19 OPT_SEND_NOWAIT

Send nowait (stream socket)

Option name OPT_SEND_NOWAIT
Protocol level SOL_TCP
Values TRUE

Task that calls send() does not wait if data is
waiting to be sent; VC/RT buffers the outgoing
data, and send() returns immediately

FALSE
Task that calls send() waits if data is waiting to
be sent

Default value FALSE

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

Change
Socket type
Comments

Anytime
Stream

Send nowait (datagram socket)

Option name
Protocol level
Values

Default value
Change
Socket type
Comments

11.15.12.19.1.20 OPT_SEND_PUSH

Send push
Option name
Protocol level
Values

Default value
Change
Socket
Comments

11.15.12.19.1.21 OPT_SOCKET_ERROR

Socket error
Option name
Protocol level

OPT_SEND_NOWAIT
SOL_UDP

TRUE

VC/RT buffers every datagram and send() or
sendto() returns immediately

(can be overridden)

FALSE

Task that calls send() or sendto() blocks until
the datagram has been transmitted.
Datagrams are not copied.

FALSE

Anytime

Datagram

OPT_SEND_PUSH

SOL_TCP

TRUE

If possible, VC/RT appends a send-push flag
to the last packet in the segment of the data
that is associated with send() and immediately
sends the data. A call to send() may block until
another task calls send() for that socket.

FALSE

Before it sends a packet, VC/RT waits until it
has received from the host enough data is
completely fill the packet

TRUE

Anytime

type Stream

OPT_SOCKET_ERROR
SOL_SOCKET

163

© 2003 ... Vision Components GmbH, Ettlingen, Germany

164

Vision Components Software Documentation Version 5.0

Values
Default value
Change

Socket type
Comments

11.15.12.19.1.22 OPT_SOCKET_TYPE

Socket type
Option name

Protocol level
Values

Default value
Change

Socket type
Comments

(use with getsockopt() only; returns value in
optval)

Datagram or stream

Returns the last error for the socket

OPT_SOCKET TYPE
SOL_SOCKET

(use with getsockopt() only; returns value in
optval)

Datagram or stream

Returns the type of socket (SOCK_DGRAM or
SOCK_STREAM)

11.15.12.19.1.23 OPT_TIMEWAIT_TIMEOUT

Timewait timeout
Option name
Protocol level
Values

Default value

Change
Socket type
Comments

OPT_TIMEWAIT_TIMEOUT

SOL_TCP

>0 ms

2 times the maximum segment lifetime (which
is a constant)

Before bound

Stream

Timewait timeout is the number of milliseconds
that TCP waits in the timewait state

11.15.12.19.2 Example: Change send-push option to FALSE

ui nt _32 handl e;

uint_32 opt _length = sizeof (uint_32);
uint _32 opt_val ue = FALSE;
uint 32 status;

status = setsockopt (handle, 0, OPT_SEND PUSH,
&opt _val ue, opt_length);
if (status !'= VCRT_OXK)

printf("\nsetsockopt() failed with error %x",

status = getsockopt(handl e, 0, OPT_SEND PUSH,
&opt _val ue, (uint_32 ptr *)&opt_| ength);
if (status !'= VCRT_OXK)

printf("\ngetsockopt() failed with error % x",

status);

status);

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions 165

11.15.12.19.3 Example: Change receive nowait option to TRUE

ui nt _32 handl e;

uint_32 opt_length = sizeof (uint_32);
uint _32 opt_val ue = TRUE;

uint_32 status;

status = setsockopt (handl e, 0, OPT_RECElI VE_NOMI T,

&opt _val ue, opt_length);

if (status != VCRT_OK)

printf("\nError, setsockopt() failed with error %x", status);

11.15.12.19.4 Example: Change Cecksum Bypass option to TRUE

ui nt _32 handl e;

uint_32 opt_length = sizeof (uint_32);
uint_32 opt_val ue = TRUE;

uint _32 status;

status = setsockopt(handl e, SOL_UDP, OPT_CHECKSUM BYPASS,

&opt _val ue, opt_length);

if (status != VCRT_OK)

printf("\nError, setsockopt() failed with error %x", status);

11.15.12.;shutdown

shutdown shut down the socket
synopsis uint_32 shutdown(uint_32 socket, uint_16 how)
parameters
socket [IN] Handle of the socket to shut
down
how [IN] One of (see description):

FLAG_CLOSE_TX
FLAG_ABORT_CONNECTION

returns VCRT_OK
Specific error code

traits Blocks, but the command is processed and
returned to immediately
The application can no longer use socket

see also socket_dgram ﬁ socket_stream |167

description

© 2003 ... Vision Components GmbH, Ettlingen, Germany

166 Vision Components Software Documentation Version 5.0

example
ui nt _32 handl e;
uint_32 status;

status = shutdown(handle, 0);

if (status !'= VCRT_OK)

printf("\nError, shutdown() failed with error code % x",
status);

© 2003... Vision Components GmbH, Ettlingen, Germany

Descriptions of the Library Functions

11.15.12.isocket_stream

socket_stream
synopsis
parameters

returns

traits

see also

description

example

11.15.12.isocket_dgram

socket_dgram
synopsis
parameters

returns

traits

see also

description

example

create a stream socket
uint_32 socket_stream(void)
none

Socket handle (success)
VCRT_SOCKET_ERROR (failure)

Blocks, although the command is serviced and
responded to immediately

bind hssl()

The application uses the socket handle to
subsequently use the socket.

See bind(). k=l

create a datagram socket
uint_32 socket_dgram(void)
none

Socket handle (success)
VCRT_SOCKET_ERROR (failure)

Blocks, although the command is serviced and
responded to immediately

bind k=2 ()

The application uses the socket handle to
subsequently use the socket.

See bind hs3

167

© 2003 ... Vision Components GmbH, Ettlingen, Germany

12

Prototypes, Include Files

169

Prototypes, Include Files

The file <vcrt.h> contains the corresponding prototypes for all functions described

in this documentation.

It is especially important to add this Include file to your user program if you call
functions with variable argument lists (print(), exec()).

This is usually done by adding the command
#i ncl ude <vcrt. h>

to the beginning of the C program file.

The file <register.h> contains hardware dependent declarations, the file
<sysvar.h> the declaration of the system variables. (See discussion of the
system variables in Appendix E).

You may also wish to include the header file <vlib.h> which is part of the VCLIB
image processing library package not covered here.

© 2003 ... Vision Components GmbH, Ettlingen, Germany

13

Memory Model of the VC20XX Cameras 171

Memory Model of the VC20XX Cameras

In contrast to the ADSP2181 signal processor the TMS320C6211used in the
VC20xx cameras has only one unified memory space.
There are 16Mbyte- and 64Mbyte-versions available for the SDRAM memory.

The SDRAM memory used is organized in 4 pages of equal size. The DSP is able
to keep all 4 pages open at the same time. If used properly this feature me be
used to speed up programs.

The following table summarizes some information about the memory:

menory size 16 MByt es 64 Moyt es
start address 0xA0000000 0xA0000000
end address OxAOFFFFFF Ox A3FFFFFF
si ze (hex) 0x01000000 0x04000000

© 2003 ... Vision Components GmbH, Ettlingen, Germany

14

Functional Principle of the VC20XX Cameras 173

Functional Principle of the VC20XX Cameras

Figure 1 illustrates how the cameras work. The differences between the various
camera types have to do with the CCD sensors used and the frame output, for
which different extension boards are used.

The left side of the figure shows the sensor board, with the CCD sensor, the
controller and processing of the video signal.

The controller is used to read-out the CCD sensor, like for common cameras. The
controller's modes can all be set by software.

The output of the CCD sensor is an analog signal (2 channels for the VC2065),
which is passed to a programmable gain amplifier (PGA, software programmable)
and then to the A/D converter.

The A/D conversion used is called "pixel-identical", because there is a separate
gray value for each pixel of the CCD sensor.

The video data may be modified using an input LUT. The image information is
then stored in the DSP's main SDRAM memory using DMA.

The image may then be displayed on the monitor in real time or as a stored
image. Therefore, part of the main memory is copied to the "Graphic Memory"
via DMA. This data transfer is usually active continously guaranteeing that the
monitor will always display up-to-date information. The image displayed on the
screen first passes a color LUT and is then displayed as 24bit RGB graphics. It
may be combined with overlay data which is also displayed in 24bit color using a
second LUT.

For external control of the image acquisition process a fast trigger input is
provided. A trigger output may be used to trigger a strobe light. Both functions are
fully implemented in hardware.

Taking and reproducing pictures is almost 100% supported by hardware. This
means, it does not require computing time. It does, however, consume memory
bandwith. It is quite difficult to tell if this will slow down processing and how much.
To be on the safe side, it is recommended to avoid these functions wherever it is
possible. (e.g. displaying a stored image is better than a live display).

© 2003 ... Vision Components GmbH, Ettlingen, Germany

Vision Components Software Documentation Version 5.0

174

14.1 Block Diagram VC20xx Cameras

k-

mdng-yoas

18MO4)1d

aoepau|
ad |

‘Bay snjelg
flopuoy &)

&Eo\:_ 1ahbig

[4r Y.

laAug

ol
Jabfu]

vn e

g

lopauuoysng ﬂ

Ww0S
akgn g
wio [

»

o

wondzysey |y
afgi 2 \m—

fowspy

qi #/2

aiydess

dsd

11299
SNL

108U3§

“1adwa)

o
au]-jeay

o J9l100u09

JalaAauo)

v [vod e a0 |¢

Jaaug

Vision Components GmbH, Ettlingen, Germany

©2003...

176

Vision Components Software Documentation Version 5.0

15

Organization of the DRAM

The VC20xx series cameras are equipped with SDRAM (synchronous dynamic
RAM) for storage of large amounts of data. The size of this SDRAM memory is 16
MBytes (or optionally 64 MBytes), organized as 4 M words a 32 bits (16 M words
a 32 bits). The SDRAM is used for main memory, storing program, data and video
data (images).

It is volatile, meaning the data is lost when the supply voltage is switched off.

In comparison to VC series cameras using an ADSP2181 DSP, itis not
necessary to use access functions for the SDRAM access. These are, however,
supplied for reasons of compatibility. If there is no need for downward-
compatibility, the user may easily access image SDRAM e.g. using a pointer.

Organization of the video memory:
Note , that the mapping of pixels to bytes has changed with respect to prior
versions with ADSP2181 DSP. (VC20xx cameras use litlle endian byte mapping).

The video memory can be any part of the SDRAM. The size of this memory area
depends on the frame format and the number of required frames. A start address
can be specified individually for the SDRAM position of the picture taken or
shown on the screen (system variables CAPT_START). or DISP_START). This
makes it possible to display several video memory screens, for example, or to
take several pictures inrapid sequence. They can then be processed, etc.

Based on the start address, the picture is written to the subsequent memory area
or read from it. The first pixel (for addr=startad) is located in the upper left corner
of the picture. The next pixel is directly to its right in the same line, etc. This way,
an entire line is stored in a continuous memory area.

To get to the beginning of the next line, the value "pitch" must be added to the
beginning of the previous line (in this case, startad). The correct value for pitch
depends on how the picture format was programmed, thus on the camera type.

© 2003... Vision Components GmbH, Ettlingen, Germany

Organization of the DRAM 177

Picture

address difference
of vertically

adjacent 1
pixels= PITCH — |

Vv

The picture format used may results in some unused memory. For example, if the
pitch were 1024 and the number of pixels per line 744, this results in 1024-
744=280 bytes (about 30%) which are wasted per line. The memory space could
be utilized better either by reducing the number of pixels per line (e.g. cols=512,
pitch=512) or by copying the picture to a compact memory area.

active area of the unused

video memory area

744 columns 1024-744=280
574 lines columns

© 2003 ... Vision Components GmbH, Ettlingen, Germany

16

Organization of the Overlay DRAM 179

Organization of the Overlay DRAM

Just like the video memory, the overlay memory can be any part of the SDRAM.
You must of course make sure that the overlay memory does not overlap video
memory or data memory areas. A start address can be specified for the overlay.
The system variable OVLY_START in the header file sysvar.h is used for this.

The organisation of the overlay SDRAM is the same as for the video data
SDRAM. Like the latter, 8 bits per pixel are used. If the pixel's value is zero,
overlay is inactive and video data will be displayed. If the pixel's value is nonzero,
overlay information will be displayed depending on the state of the overlay mask
register.

The VC2065 features powerful image graphics and overlay display features.

- 8 bit image graphics + independent 8 bit overlay

- 2 lookup tables 256x24 (RGB) for image and overlay

- 8 bit overlay mask for individual control of overlay bits
- 6 regular overlay planes + 3 translucent overlay planes

The following drawing gives an overview of the functionality:

It is important to know that there is a memory for image data starting at address
DISP_START in main memory. This data is normally displayed using the "Image
LUT" . Besides that the user may use an overlay memory with the same size (and
organized with 8 bits per pixel) starting at address OVLY_START in main
memory. Depending on the bits set in overlay memory and the value of the
overlay mask the pixel will be displayed either as overlay using the "Overlay LUT"
, as image using the "Image LUT" or as a combination of both (6 bits from the
image and 2 bits from overlay) using one of the three translucent tables in the
"Overlay LUT".

With the pixel mask register it is possible to select and deselect individual overlay
planes very rapidly. Setting the register to zero disables the overlay display.

© 2003 ... Vision Components GmbH, Ettlingen, Germany

180

Vision Components Software Documentation Version 5.0

The following table summarizes the functionality of the image data and overlay

display:

O[7..0] =0 no overlay, display of image data through image data LUT
O[7..2] *0 normal overlay, display of overlay data through overlay LUT

O[7..2] =0,0[1..0] 0
overlay LUT

3 translucent tables, display of image data through

© 2003... Vision Components GmbH, Ettlingen, Germany

182 Vision Components Software Documentation Version 5.0

17 Description of the File Structure

Start address of the file system is at address 0x020000 (sector 2).
User files can be stored starting at address
0x060000 (sector 6). The files are stored one
after another, without gaps.

Here's the overview about the different file types :
Executable File e
ASCI| File e
Binary Data File he3]
JPEG Data File [
RLC Data File 4

17.1 Executable File

The internal data structure complies to the standard .COFF format.
see ASCIIFile |3, Binary Data File |3, JPEG Data File ed, RLC Data File ke

© 2003... Vision Components GmbH, Ettlingen, Germany

Description of the File Structure

17.2 ASCIl File

183

See Executable File @ Binary Data File @ JPEG Data File @ RLC Data File @

17.3 Binary Data File

see Executable File 183, ASCII File %), JPEG Data File 4, RLC Data File |54

© 2003 ... Vision Components GmbH, Ettlingen, Germany

184 Vision Components Software Documentation Version 5.0

17.4 JPEG Data File

See Executable File @ ASCII File @ Binary Data File @ RLC Data File |14

17.5 RLC Data File

See Executable File #3, ASCII File 3, Binary Data File hsl, JPEG Data File |4

© 2003... Vision Components GmbH, Ettlingen, Germany

186 Vision Components Software Documentation Version 5.0

18 System Variables

VC/RT allows access to a series of system variables. Their addresses are defined
in a header file called sysvar.h. Please always use the names in this header file
as a reference. Do not use absolute addresses, as they may be changed while
the development of the cameras continues. System variables may be accessed
using the functions getvar() , setvar() , getlvar() and setlvar().

The following is a list of the most important system variables:

© 2003... Vision Components GmbH, Ettlingen, Germany

System Variables 187

THE FOLLOWN NG VARI ABLE IS NOT AVAI LABLE FOR VO RT >= 4.0 !!!
vline current video line for cameras using interlacing , counts from 0 to 312 for the
first half image and from 313 to 624 for the second one (CCIR: 625 video lines)

Please note, that most of the system variables are highly hardware dependent .

18.1 Example: How to use Systems Variables
#i ncl ude <sysvar. h>
voi d set _display start(int addr)

setvar (DI SP_START, addr); [/* Use of
system vari abl e DI SP_START */
}

© 2003 ... Vision Components GmbH, Ettlingen, Germany

19

C compiler 189

C compiler

The compiler uses intelligent optimization procedures. This means the C
commands are not always processed in the desired sequence. In the following,
you see how the compiler handles a program that waits for a parallel process to
set the semaphore a to a nonzero value:

int a=0;

whi | e(a==0);

Compiled assembly-language program

1. Reset memory location for ato O

2. Read memory location for a and copy to a register
3. Register =0 ?

4. If yes, go to 3.

As can be seen, the program was compiled completely correctly but does not do
what was desired. The assembly program should jump back to assembly
command 2 instead of 3, to repeatedly reread the memory location for the
variable. In order to get the correct result, use the statement

volatile int a=0; instead of the above.

The runtime library for the C compiler includes a series of standard functions, but
not the function printf().

VC/RT contains a stripped-down form called print() for output of text, int and long

variables but not floats. The function pstr() is used to output strings (also with the
% character).

© 2003 ... Vision Components GmbH, Ettlingen, Germany

Useful Files 191

20

20.1

20.2

Useful Files

The following batch files (.BAT files) are useful for working with the development
system. After VC/RT is installed, these files are located in the corresponding
VC/RT directories.

c.bat

cl6x -k -03 -pl -mM3 %.c

This batch file is used to compile a program without calling the linker.

It is usually used for large projects. Each C source file can be compiled
individually and then linked with another batch file.

Call:
c pgnml

This call compiles the program pgml.c and creates the object files pgni. cde,
pgml. obj and pgnt.int.

The option

-03

compiles for the best optimization possible.

-m 3

compiles for the "large” memory model. Without this option, the program is further
optimized.

cc.bat

cl6x -k -03 -pl -mM3 %.c

I nk6x -u _c_int0l %.0bj -m%..map -0 %.out cc.cnd
copy %.out exec.out

\adsp\ 21xx\util\econv %

\adsp\ 21xx\util\scvt

copy adsp. nmsf 9. nsf

This batch file compiles and links a program, and converts itto S Records. The
.MSF file thus created is then copied to the directory ..\PROCOMM.

This batch file compiles only a single C source file. If the program consists of
several source files, they can be individually compiled and linked with, say,
C.BAT.

© 2003 ... Vision Components GmbH, Ettlingen, Germany

192 Vision Components Software Documentation Version 5.0

Call:
cc pgni

This call compiles the program pgml.c and creates the S record file pgml.msf in
the directory .\PROCOMM

cc.bat links your program with the Texas Instruments runtime library and the
Vision Components libraries vcrt.a and vclib.a.

© 2003... Vision Components GmbH, Ettlingen, Germany

Useful Files

20.3

20.4

cc.cmd

The linking process is controlled by the file cc.cmd

-C
-1 vert.|i
-1 velib. |
-1 rts6201.
-u _c_int0l1

-e _c_int0l1

-stack 0x40000

b
ib
lib

/* for MEMORY MAP = 1 */
MVEMORY

{

PVEM 0 = 0a0200000h
initialization */

BVEM 0 = 0a0060000h
.cinit */

}

{SECTI ONS
.text > PVEM
.tabl es > PVEM
.data > PVEM
. stack > BVEM
. bss > PVEM
. sysnmem > PVEM
.cinit > PVEM
. const > PMVEM
.cio > PVEM
.far > PVEM

}

40000h /*

193

40000h /* intended for

. bss, .system .stack,

Here, the libraries are specified (vcrt.lib, vclib.lib, rts6201.lib)
The stack size (-stack 0x4000) and the memory map are specified

If you do not want the VCLIB to be used, or you do not own it, simply omit the

string "-I vclib.lib" in cc.cmd

Large Projects

For large projects consisting of several C source files, itis easy to create your
own .BAT files for compiling and linking.

The following illustrates how to do this, based on the .BAT files used when

creating the operating system.

The individual C files can be compiled with, say, C.BAT.

© 2003 ... Vision Components GmbH, Ettlingen, Germany

194

Vision Components Software Documentation Version 5.0

To compile all C files, a .BAT file called MAKE.BAT can be used. Of course, this
file must be tailored to each project.

Please do not forget to change this file whenever you add or delete C files from
the project.

cl6x -03 -nl 3 |l oader.c
cl6x -03 -m 3 rs232.c
cl6x -03 -mM 3 rs232a.c
cl 6x -03 -nl 3 setbaud.c
cl6x -03 -nm 3 fnaddr.c
cl6x -03 -n 3 search.c
cl6x -03 -nml 3 coldport.c
cl6x -03 -mM3 main.c
cl6x -03 -nm 3 bd.c

cl6x -03 -nl 3 del.c
cl6x -03 -mM3 dir.c
cl6x -03 -mM3 dwn.c
cl6x -03 -n 3 dnp.c
cl6x -03 -n 3 dd.c

cl6x -03 -mM3 er.c

cl6x -03 -mM 3 ex.c

cl6x -03 -mM3 fd.c

cl6x -03 -m 3 go.c

cl6x -03 -mM 3 he.c

cl6x -03 -mM3 ht.c

I nk6x -u _c_int01 shell.obj -mshell.map -0 shell.out shell.cnd
copy shell.out exec. out

\‘adsp\ 21xx\util\econv shel

\adsp\ 21xx\util\scvt

copy adsp. nsf shell. nsf

Our MAKE.BAT contains a linker call, but we usually use a second batch file
(L2.BAT) for linking and creating the .MSF file.

I nk6x -u _c_int01 shell.obj -mshell.map -0 shell.out shell.cnd
copy shell.out exec. out

\adsp\ 21xx\util\econv shel

\adsp\ 21xx\util\scvt

copy adsp. nsf shell. nsf

This calls the linker (Ink6x) with a reference to the file shell.cmd. This option
causes the linker to read the file names required for linking the project from the
file shell.cmd.

For our project, shell.cmd must contain the following:

| oader . obj
rs232. obj

rs232a. obj
set baud. obj

© 2003... Vision Components GmbH, Ettlingen, Germany

Useful Files

195

f naddr . obj
sear ch. obj
col dport. obj
mai n. obj
bd. obj

del . obj

di r. obj
dwn. obj
dnp. obj

dd. obj

er. obj

ex. obj

fd. obj

go. obj

he. obj

ht . obj

This file must be modified as the project develops. All objects not listed here are
taken from either the run-time library rts6201.lib or from the VCRT library.

© 2003 ... Vision Components GmbH, Ettlingen, Germany

Description of the Example Programs 197

21 Description of the Example Programs

21.1 test.c

This is the first program you should compile to check if everything works correctly.
The program just outputs :

hello world !!!!

21.2 info.c

The program "info" outputs a series of system variables via the serial interface.
For example, the image format can be determined. The following is a copy of the
program's printout running on a VC51.:

$info

R Ik S S S S O

* System Vari abl es *

EE R I I R R R

cpu clock frequency : 39321600

current video line : 39
startpage of inmage 0
startaddress inmage . 0x0

active hor. pixels/2 : 372

active ver. pixels : 574

pitch / 2 . 512
startpage overl ay . 143
startaddress overlay

byt e address : 0x00047700
bit address : 0x0023B800
overlay pitch / 16 . 64

O fset_Overl ay © 2048
overlay hw of f set : 46

$

© 2003 ... Vision Components GmbH, Ettlingen, Germany

List of VC/RT Functions 199

22 List of VC/RT Functions

22.1 Memory Allocation Functions

Legend: A: Assembly function C: C function S: System call M: Macro

© 2003 ... Vision Components GmbH, Ettlingen, Germany

200 Vision Components Software Documentation Version 5.0

22.2 Flash EPROM File Functions

Legend: A: Assembly function C: C function S: System call M: Macro

22.3 1/O Functions

Legend: A: Assembly function C: C function S: System call M: Macro

© 2003... Vision Components GmbH, Ettlingen, Germany

List of VC/RT Functions 201

22.4 DRAM Access Functions

Legend: A: Assembly function C: C function S: System call M: Macro

© 2003 ... Vision Components GmbH, Ettlingen, Germany

202 Vision Components Software Documentation Version 5.0

22.5 Functions Processing Pixel Lists

Legend: A: Assembly function C: C function S: System call M: Macro

22.6 Video Control Functions

Legend: A: Assembly function C: C function S: System call M: Macro

© 2003... Vision Components GmbH, Ettlingen, Germany

List of VC/RT Functions 203

22.7 RS232 Basic Functions

Legend: A: Assembly function C: C function S: System call M: Macro

22.8 Basic Flash EPROM Access Functions

Legend: A: Assembly function C: C function S: System call M: Macro

© 2003 ... Vision Components GmbH, Ettlingen, Germany

204 Vision Components Software Documentation Version 5.0

22.9 Utilities

Legend: A: Assembly function C: C function S: System call M: Macro

22.10 Lookup Table Functions

Legend: A: Assembly function C: C function S: System call M: Macro

© 2003... Vision Components GmbH, Ettlingen, Germany

List of VC/RT Functions 205

22.11 Time Related Functions

Legend: A: Assembly function C: C function S: System call M: Macro

© 2003 ... Vision Components GmbH, Ettlingen, Germany

206 Vision Components Software Documentation Version 5.0

Index

? (Shell Command) 20

_A -

accept 131

ad_calc 83

ASCII File 183
File Format 183

autoexec 43

baud rate 17
baudrate 59

get 59

set 59

Set Baudrate 101
bd (Shell Command) 17

Binary File 183
File Format 183

bind 133
Binding 125
blrdb 81
blrdo 79
birds 80
blrdw 76
blwrb 77
blwro 79
blwrw 77
Booting 43
- C -
c_dtae 114
c_time 114

c_timedate 115

Camera 34
Development for a specific Camera

capture_request 89
cd (Shell Command) 17

34

close 58
close a Device 58
Compiler 189
connect 134
Establishing a Stream Socket Connection
Conversion 32
ASCII Files 32
COFF to VC/RT 32
File to S-Record 33
Hex Stringto Integer 71
JPEG Files 33
S-Records to Binary File (PC) 34
System Time -> date and h/m/s 115
system time->date 114
Systemtime->h/m/s 114
Conversion Binary Files 33
copy (Shell Command) 18
copy file 18
cx (Shell Command) 17

D -

Data Pointer 109
get 109

Datagram Socket 120
Comparison Datagram / Stream 121
Buffering 126
Diagram Creating and Using 123
Prespecifying a peer 127
Setting Socket Options 125
Shutting down 127
Transferring Data 126

date 24

del 64

del (Shell Command) 18

delete file 18

device 58
close 58
device control Functions 59
open 58
read 59
read character from a device 60
set the file position 61
write 59
write a character to a device 60

127

© 2003... Vision Components GmbH, Ettlingen, Germany

Index

Diagram 123

Creating and Using Datagram Sockets 123

Creating and Using Stream Sockets

dir (Shell Command) 19

directory 59
make 59

read 59

directory of files 19
display 26

ASCII file 26

board temperature 24
date 24

time 24

timezone 24

download to PC 19

Downloading 31

DRAM 176
Organization of the DRAM 176
Organization of the Overlay DRAM
Overview Access Functions 201

DRAM Access Functions 73
blrdb 81

blrdo 79
birds 80
blrdw 76
blwrb 77
blwro 79
blwrw 77
Overview 201
rd20 74
rd32 75
rdric 80
rovl 78
rpix 75
wovl 78
wpix 76
wr20 74
wr3d2 75
xorovl 80
Xorpix 79

DRAMByteFree 54
DRAMByteMalloc 54
DRAMBytesAvail 52
DRAMOvIMalloc 56
DRAMPageMalloc 53
DRAMPagesAvail 52

124

179

DRAMPgFree 55
DRAMPgMalloc 53
DRAMScreenMalloc 56
DRAMWordFree 55
DRAMWordMalloc 54
DRAMWordsAvail 53
dwn (Shell Command) 19

_E-

ENET _get _stats 136
er (Shell Command) 20
erase 20, 107
flash 59
ex (Shell Command) 20

exec 66
Overview 40

File Format 182

Falsh EPROM 63
Search next available Space 63

fclose 66

fcreat 65
File 32
ASCIl 32
Binary 33
c.bat 191
cc.bat 191
ccemd 193
Close a Flash EPROM File 66
copy 18
Create a Flash EPROM file 65
delete 18,59

delete afile 64

directory 19

downloadto PC 19

File Structure 182

File System 37

Format ASCII File 183
Format Binary File 183
Format Executable File 182
Format JPEG File 184
Format RLC Data File 184
get name and type of afile 64

207

© 2003 ... Vision Components GmbH, Ettlingen, Germany

208 Vision Components Software Documentation Version 5.0
File 32 fnaddr 63
JPEG 33 fnrame 64
load program from PC 23 fremain 65
load S-records from PC 23 loadf 68
Merge two MSF Files 34 Overview 200
position 61 search 62
search for a file on flash EPROM 62 snext 63
Search for next free space on Flash EPROM Flash MEMORY 24
63 pack 24
Stearc-h for Star; ;ddress 63 fipgm 104
store image
type ASCII file 26 flpgm16 106
upload from PC 23 flpgm3z2 107
upload jpeg to camera 22 flpgm8 105
ASCII File 183 fnaddr 63
Binary File 183 fname 64
Executable File 182 fremain 65
JPEG File 184 functions 100, 101, 107
RLC DataFile 184 obsolete 100, 101, 107
) - Overview 202
file position 61
Files 191 - G -
Overview useful Files 191
Upload Multiple Files at once 34
fio_fgetc 60 gdate 116
flash 59 General I/O Functions 57
check system 59 io_ctl 59
erase 59 io_fclose 58
pack 59 io_fgetc 60
read directory 59 io_fopen 58
close afile 66 io_fputc 60
create a file 65 ?o_fread 59
delete afile 64 io_fseek 61
erase 20 io_get_handle 61
io_write 59

Erase Sector(s) 107

Execute a Program from Flash EPROM 66
get name and type of afile 64

Load Program from Flash EPROM 68

Low Level Functions 103, 104, 105, 106, 107
Overview Functions 200

remaining Space 65

Search a File 62

Overview 203

Flash EPROM Functions 61

del 64
exec 66
fclose 66
fcreat 65

General Information 6
get start of bss segment
getbss 110
getdp 109
getfl6é 103
getf32 104
getf8 103
getlvar 109
getpeername
getstptr 109
getvar 108
gtime 116
gtimedate

110

136

117

© 2003... Vision Components GmbH, Ettlingen, Germany

Index

“H -

hardware test 21

he (Shell Command) 20
help 20

hextoi 71

ht (Shell Command) 21

i/O control 59

I/0 Functions 69
hextoi 71

inPLC 73
outPLC 72
Overview 200
print 69
pstr 69
res RTS 71
resPLCn 72
setPLCn 72
setRTS 71
sprint 70
I/O nonblocking 129
I/O stream 61
get pointer to default I/O Stream 61
Image 92,93, 95
Acquisition 92, 93, 95
triggered 97
init LUT 113
inPLC 73
Input value from PLC 73
Introduction 3

io_ctl 59
io_fclose 58
io_fopen 58
io_fputc 60
io_fread 59

io fseek 61
io_get_handle 61
io_write 59

_] -

jl (Shell Command) 22

jpeg 22
load 22
store displayed image to file 22
Transfer image to PC 22
File Format 184

js (Shell Command) 22

jt (Shell Command) 22

“K -

kbdrcv 102
kbready 102
Keypad 102

Read Character 102
Receive Buffer Ready 102

S L -

Library Functions 46
Memory Allocation Functions 46

Overview 46
lo (Shell Command) 23

loadf 68
Loading 31
Data 31

Programs 31, 37
Lookup Table Functions 110
init LUT 113
Overview 204

set lut comp 111
set_overlay bit 110
set_ovimask 112
set_translucent 111

Low Level EPROM Access Functions

erase 107
flogm 104
flpgm16 106
flopgm32 107
flogm8 105
getfl6é 103
getf32 104
getf8 103

ltimedate 116

209

© 2003 ... Vision Components GmbH, Ettlingen, Germany

210

Vision Components Software Documentation Version 5.0

M -

mem (Shell Command) 23
Memory 56

Allocate DRAM for one Overlay 56
Allocate DRAM for one Screen 56

Allocate DRAM in Units of a Memory Page
Allocate DRAM Memory in Bytes 53, 54

Allocate DRAM Memory in Words 54
Allocation 49

available 23

Available Memory Segments 52
Number of available Bytes 52
Number of available DRAM Pages 52

Number of available DRAM Words 53

print list of available memory 50

vcsetup 48

MMC 59

delete file 59
make directory 59
pack 59

read directory 59
53 ~ N -
nonblocking I/O 129

_0 -

obsolete functions 100, 101, 107

open 58
open a Device 58

Operating System 12

print List of Available System Memory Segments Kernel 12

°2 Resources 10
Release 49 Tasks of 8
Release DRAM Memory allocated by
DRAMPgMalloc 55 outPLCn 72

Release DRAM Memory allocated in Bytes
Release DRAM Memory allocated in Words

System Memory Allocation 50
System Memory Release 51
usage 23

Memory Allocation Functions 46

,Sysmalloc 50
,vcmalloc 49
DRAMByteFree 54
DRAMByteMalloc 54
DRAMBYytesAvail 52
DRAMOvIMalloc 56
DRAMPageMalloc 53
DRAMPagesAvail 52
DRAMPgFree 55
DRAMPgMalloc 53
DRAMScreenMalloc 56
DRAMWordFree 55
DRAMWordMalloc 54
DRAMWordsAvail 53
Overview 199
prtfree 50

sysfree 51
sysprtfree 52
vcfree 49

54 Overlay 79

55 Block read 79
Block write 79
Organization of the Overlay DRAM 179
Read Pixel 78
Set Overlay Mask 112
translucent 111
Write Pixel 78
XOR Pixel 80

Overview 201

DRAM Access Functions 201
Flash EPROM Basic Functions 203
Flash Eprom Functions 200
Functions processing Pixel Lists 202
I/0 Functions 200
Library Functions 46
Lookup Table Functions 204
Memory Allocation Functions 199
RS232 Basic Functions 203
Time Related Functions 205
Utilities 204
Video Control Functions 202

© 2003... Vision Components GmbH, Ettlingen, Germany

Index

_P-

pack 24
flash 59
path 17

execution directory 17
working directory 17

peer 127

picture 89
acquisition 89

Pixel 82
Pixel List Functions 82
Read Block of Pixels 81
Read Block of Pixels with Subsampling 80
Read Pixel 75
Write Block of Pixels 77
Write Pixel 76
XOR 79
XOR an Overlay Pixel 80
Read Overlay 88
read pixel list 86
write Overlay 87
ad_calc 83

ro_list 88

rp_list 86

wo_list 87
wo_set 85
wo_xor 86
wp_list 84
wp_set 85
wp_xor 85

Pixel Lists 202

Overview Functions 202

pk (Shell Command) 24

PLC 73
Input Value 73

Output Value to PLC 72
Reset(=clear) PLC signal 72
Set PLC signal 72

Power Up 43

print 69

Procomm 30

Downloading 31

Key Combinations 30
Settings 30

Uploading 31
Program 43
Automatic Execution on Power Up 43

caling 40
Execute a Program from Flash EPROM

upload 23

prtfree 50
pstr 69

‘R -

rd20 74

rd32 75

rdric 80

read 59

read from Device 59
resPLCn 72

resRTS 71

RLC 80
read a line of RLC data from DRAM 80

File Format 184
rop_list 88

rovl 78

rp_list 86

rpix 75

RS232 Basic Functions 98
kbdrcv 102
kbready 102
Overview 203
rbempty 101
rbready 100
rs232rcv. = 99
rs232snd 98
sbfull 100
sbready 99
setbaud 101

rs232rcv 99

RTS 59
clear 59
set 59

_S-

search 62
Serial Interface 98

Basic Functions 203

211

66

© 2003 ... Vision Components GmbH, Ettlingen, Germany

212 Vision Components Software Documentation Version 5.0

Serial Interface 98
Clear RTS signal 71
Formatted Output 69
Output a String 69
receive a character 99
Receive Buffer Ready 100
Recieve Buffer empty? 101
send a character 98
Send buffer full? 100
send buffer ready? 99
Set Baudrate 101
Set RTSsignal 71

set 27
shutter 27
timezone 24
video mode 28

set_lut_ comp 111

set_overlay bit 110

set ovimask 112

set_translucent 111

SET trig_lossy 97

SET trig_sticky 97

setlvar 109

setPLCn 72

setRTS 71

setvar 108

sh (Shell Command) 27

Shell 14
Description of the Commands 16

exitfrom 20

? 20

bd 17
cd 17
copy 18
cx 17
del 18
dir 19
dwn 19
er 20
ex 20
he 20
ht 21
22

js 22

jt 22

lo 23

mem 23
pk 24
sh 27
time 24
tp 26
type 26
vd 28
ver 27
shutter 97
set 27
snext 63
Socket 120

Datagram Socket 120
Stream Socket 121

accept 131

bind 133

connect 134
ENET _get_stats 136
getpeername 136

Sockets 125

Binding 125

Changing Socket Options 125
Creating 125

Creating and Using 122

sprint 70
S-Record 33
Build 33

Stack Pointer 109

get 109

Stream Socket 121

Comparison Datagram / Stream 121
Active Establishing of a Connection 128
Buffering data 129

Changing Options 127

Diagram Creating and Using 124
Establishing a Connection 127

Getting Socket Names 128

Improving the throughput of Stream Data 130
Passive Establishing of a Connection 128
receiving Stream data 129

send nowait 129

Sending Stream Data 128

Shutting Down Gracefully 130

Shutting down with abort 130

String 70

Formatter Output to a String 70

Subsampling 80

© 2003... Vision Components GmbH, Ettlingen, Germany

Index

sysfree 51
sysmalloc 50
sysprtfree 52

System Variable 108
read 108
read long system variable 109
write 108
write long system Variable 109
List of System Variables 186

_T -

take picture 26

TCP 124

temperature 24

board 24

tenable 95

time 24,115

time (Shell Command) 24

Time Related Functions 113
c_date 114
c_time 114
c_timedate 115
gdate 116
gtime 116
gtimedate 117
Idate 115
[timedate 116
Overview 205
time 115
X_timedate 117
xtimedate 118

timezone 24

tp (Shell Command) 26

tpict 92

tpp 93

tpstart 95

tpwait 95

translucent 111

trdy 96

trigger 97

type (Shell Command) 26

_U -

UDP 123

Upload 34
Multiple Files at once 34
Uploading 31
Programs 37
Utilities 30
ACONV 32
BCONV 33
Diagram 33
ECONV 32
JCONV 33
Overview 204
S2B 34
SCVT 33
SMERGE 34
VCINIT.BAT 34

Utility Functions 108

getbss 110
getdp 109
getlvar 109
getstptr 109
getvar 108
setlvar 109
setvar 108

_V -

VC/RT version 27
vcfree 49

VCINIT 34

vcmalloc 49

VCRT selectall 147
vcsetup 48

vd (Shell Command) 28
ver (Shell Command) 27
version 27

video 28

set mode 28
Video Control Functions 89
capture_request 89
Overview 202

SET trig_lossy 97
SET trig_sticky 97
shutter 97

tenable 95

tpict 92

tpp 93

213

© 2003 ... Vision Components GmbH, Ettlingen, Germany

214 Vision Components Software Documentation Version 5.0

Video Control Functions

tpstart 95
tpwait 95
trdy 96
vmode 92
video mode 92
vmode 92

W -

wo_list 87
wo_set 85
wo_xor 86
wovl 78
wp_list 84
wp_set 85
wp_xor 85
wpix 76
wr20 74
wr32 75

write 59
write to a device

- X -

X_timedate 117
xorovl 80
xorpix 79
xtimedate 118

59

89

© 2003... Vision Components GmbH, Ettlingen, Germany

	Introduction
	General Information
	Tasks of the Operating System
	VC/RT Resources
	The VC/RT Kernel
	The Shell ("shell")
	Description of the Shell Commands
	Shell Command "bd"
	Shell Command "cd"
	Shell Command "cx"
	Shell Command "copy"
	Shell Command "del"
	Shell Command "dir"
	Shell Command "dwn"
	Shell Command "er"
	Shell Command "ex"
	Shell Command "he"
	Shell Command "ht"
	Shell Command "jl"
	Shell Command "js"
	Shell Command "jt"
	Shell Command "lo"
	Shell Command "mem"
	Shell Command "pk"
	Shell Command "time"
	Shell Command "tp"
	Shell Command "type"
	Shell Command "sh"
	Shell Command "ver"
	Shell Command "vd"

	Supplied Utilities
	Procomm
	Important Key Combinations for Procomm
	Settings for Procomm
	Uploading and Downloading with Procomm

	ECONV
	ACONV
	BCONV
	JCONV
	SCVT
	Diagram of the Utilities
	SMERGE
	S2B
	VCINIT.BAT

	The File System
	Loading Programs to the Flash EPROM

	The Operating System Function "exec"
	Auto Execution of Programs when booting
	Descriptions of the Library Functions
	Overview of the Library Functions
	Memory Allocation Functions
	vcsetup
	vcmalloc
	vcfree
	prtfree
	sysmalloc
	sysfree
	sysprtfree
	DRAMPagesAvail
	DRAMBytesAvail
	DRAMWordsAvail
	DRAMPgMalloc
	DRAMPageMalloc
	DRAMByteMalloc
	DRAMWordMalloc
	DRAMByteFree
	DRAMWordFree
	DRAMPgFree
	DRAMScreenMalloc
	DRAMOvlMalloc

	General I/O Functions
	io_fopen
	io_fclose
	io_read
	io_write
	io_ioctl
	io_fgetc
	io_fputc
	io_fseek
	io_get_handle

	Flash EPROM Functions
	search
	snext
	fnaddr
	fname
	del
	fremain
	fcreat
	flclose
	exec
	loadf

	I/O Functions
	pstr
	print
	sprint
	hextoi
	setRTS
	resRTS
	setPLCn
	resPLCn
	outPLC
	inPLC

	DRAM Access Functions
	rd20
	wr20
	rd32
	wr32
	rpix
	wpix
	blrdw
	blwrw
	blwrb
	rovl
	wovl
	blrdo
	blwro
	xorpix
	xorovl
	blrds
	rdrlc

	blrdb
	Functions for Processing of Pixel Lists
	ad_calc
	wp_list
	wp_set
	wp_xor
	wo_set
	wo_xor
	rp_list
	wo_list
	ro_list

	Video Control Functions
	capture_request
	vmode
	tpict
	tpp
	tpstart
	tpwait
	tenable
	trdy
	shutter
	SET_trig_lossy
	SET_trig_sticky

	RS232 (V24) Basic Functions
	rs232snd
	rs232rcv
	sbready
	sbfull
	rbready
	rbempty
	setbaud
	kbdrcv
	kbready

	Low Level EPROM Access Functions
	getf8
	getf16
	getf32
	flpgm
	flpgm8
	flpgm16
	flpgm32
	erase

	Utility Functions
	getvar
	setvar
	getlvar
	setlvar
	getstptr
	getdp
	getbss

	Lookup Table Functions
	set_overlay_bit
	set_lut_comp
	set_translucent
	set_ovlmask
	init_LUT

	Time Related Functions
	c_time
	c_date
	c_timedate
	ltime
	ldate
	ltimedate
	gtime
	gdate
	gtimedate
	x_timedate
	xtimedate
	RTC_set_time

	TCP/IP Functions
	Datagram Sockets
	Stream Sockets
	Comparison of Datagram and Stream Sockets
	Creating and using Sockets
	Diagram: Creating and Using Datagram Sockets (UDP)
	Diagram: Creating and Using Stream Sockets (TCP)
	Creating Sockets
	Changing Socket Options
	Binding Sockets
	Using Datagram Sockets
	Setting Datagram Socket Options
	Transferring Datagram Data
	Buffering
	Prescpecifying a peer
	Shutting Down Datagram Sockets

	Using Stream Sockets
	Changing Stream Socket Options
	Establishing Stream Socket Connections
	Passive Establishing
	ActiveEstablishing

	Getting Stream Socket Names
	Sending Stream Data
	send nowait (nonblocking I/O)

	Receiving Stream Data
	Buffering Data
	Improving the Throughput of Stream Data
	Shutting Down Stream Sockets
	Shutting Down Gracefully
	Shutting Down with an abort operation

	Summary of Socket Functions
	accept
	bind
	connect
	ENET_get_stats
	getpeername
	getsockname
	getsockopt
	listen
	VCRT_ping
	recv
	recvfrom
	VCRT_attachsock
	VCRT_detachsock
	VCRT_geterror
	VCRT_selectall
	VCRT_selectset
	send
	sendto
	setsockopt
	Option Names
	OPT_CHECKSUM_BYPASS
	OPT_CONNECT_TIMEOUT
	VCRT_SO_IGMP_ADD_MEMBERSHIP
	VCRT_SO_IGMP_DROP_MEMBERSHIP
	VCRT_SO_IGMP_GET_MEMBERSHIP
	OPT_RETRANSMISSION_TIMEOUT
	OPT_KEEPALIVE
	OPT_MAXRTO
	OPT_NO_NAGLE_ALGORITHM
	OPT_RBSIZE
	VCRT_SO_LINK_RX_8021Q_PRIO
	VCRT_SO_LINK_RX_8023
	OPT_RECEIVE_NOWAIT
	OPT_RECEIVE_PUSH
	OPT_RECEIVE_TIMEOUT
	OPT_TBSIZE
	VCRT_SO_LINK_TX_8021Q_PRIO
	VCRT_SO_LINK_TX_8023
	OPT_SEND_NOWAIT
	OPT_SEND_NOWAIT (StreamSocket)
	OPT_SEND_NOWAIT (Datagram Socket)

	OPT_SEND_PUSH
	OPT_SOCKET_ERROR
	OPT_SOCKET_TYPE
	OPT_TIMEWAIT_TIMEOUT

	Example: Change send-push option to FALSE
	Example: Change receive nowait option to TRUE
	Example: Change Cecksum Bypass option to TRUE

	shutdown
	socket_stream
	socket_dgram

	Prototypes, Include Files
	Memory Model of the VC20XX Cameras
	Functional Principle of the VC20XX Cameras
	Block Diagram VC20xx Cameras

	Organization of the DRAM
	Organization of the Overlay DRAM
	Description of the File Structure
	Executable File
	ASCII File
	Binary Data File
	JPEG Data File
	RLC Data File

	System Variables
	Example: How to use Systems Variables

	C compiler
	Useful Files
	c.bat
	cc.bat
	cc.cmd
	Large Projects

	Description of the Example Programs
	test.c
	info.c

	List of VC/RT Functions
	Memory Allocation Functions
	Flash EPROM File Functions
	I/O Functions
	DRAM Access Functions
	Functions Processing Pixel Lists
	Video Control Functions
	RS232 Basic Functions
	Basic Flash EPROM Access Functions
	Utilities
	Lookup Table Functions
	Time Related Functions

