
Vision Components, Ettlingen

Documentation of the image processing library VCLIB
version 3.0

Copyright Vision Components 1997 - 2004

This documentation was created very conscientiously. No liability will be assumed for any errors or
misleading descriptions which it may contain. The statements made in this documentation are
informative in nature and not a guarantee of features. The right is reserved to make changes in the
interest of technical progress.

This documentation describes the programs of the image processing library version 3.0. You can also
consult the following documentation:

- Hardware documentation Hardware

- Documentation VC/RT Operating system and basic functions

- Documentation FLIB Fast vector functions

Main changes with respect to VCLIB2.0 release 2 are:

All functions have been completely revised. They have been rewritten to account for the structure and
possibilities of the TI C62xx and C64xx architecture. This allows for future improvements in speed and
functionality. VCLIB 3.0 is not backward compatible to the (older) ADSP architecture.

Software documentation - Image processing library for VC cameras Page 1 15/12/04

Vision Components, Ettlingen

CONTENTS

CHANGES WITH RESPECT TO VCLIB2.0 RELEASE 2 ..3

FUNCTIONS WORKING ON IMAGE VARIABLES ..3

GENERAL COMMENTS ON THE IMAGE PROCESSING LIBRARY ...6
AVOID FORMAT-FILLING IMAGE PROCESSING..6
USE OPTIMIZED PROGRAMS...6
USE PROCESSES WHICH ARE AS SIMPLE AS POSSIBLE...6
TO THE EXTENT POSSIBLE, MAKE CALCULATIONS BEFOREHAND...6
USE RUN LENGTH CODE FOR BINARY IMAGES..7
METHODS FOR AVOIDING FORMAT-FILLING IMAGE PROCESSING...7
AREAS OF INTEREST..7
FORGOING HIGH RESOLUTION ...7
ONE DIMENSIONAL INSTEAD OF TWO-DIMENSIONAL IMAGE PROCESSING..7
IMPORTANT IMAGE PROCESSING DATA STRUCTURES...8
GRAY-SCALE IMAGES/IMAGE WINDOWS..8
COLOR IMAGES ...8
RUN LENGTH CODE (RLC) ..9
RUN LENGTH CODE (RLC) ..9
LABELLED RUN LENGTH CODE (SLC) ...10
ADDRESS LISTS (PIXEL LISTS)..11
CONTOUR CODE (CC) ...11
JPEG DATA (JPG) ..12
OVERVIEW OF THE LIBRARY FUNCTIONS ...13

MACROS..14

PROGRAMS FOR PROCESSING GRAY IMAGES..19
IMAGE VARIABLE..19
SAMPLE IMAGE VARIABLES...20
GRAY SCALE CORRELATION ROUTINES...37

PROGRAMS FOR JPEG COMPRESSION / DECOMPRESSION...39

PROGRAMS FOR PROCESSING BINARY IMAGES IN (UNLABELLED) RUN LENGTH CODE45

PROGRAMS FOR PROCESSING BINARY IMAGES IN LABELLED RUN LENGTH CODE..............56

PROGRAMS FOR PROCESSING CONTOUR CODE(CC)..60

GRAPHICS FUNCTIONS..62
PROGRAMS FOR PROCESSING PIXEL LISTS ...70
APPENDIX A: DESCRIPTION OF THE EXAMPLE PROGRAMS..74

APPENDIX B: LIST OF LIBRARY FUNCTIONS ...79

INDEX ..85

Software documentation - Image processing library for VC cameras Page 2 15/12/04

Vision Components, Ettlingen

Changes with respect to VCLIB2.0 release 2

Functions working on image variables

Functions working on image variables behave pretty similar to their previous counterparts. Images and
regions of interest are specified by the image structure as an input to the function.
The internal operational philosopy, however, has changed: The ADSP compatible philosopy required
image data (U8) to be copied to an integer line buffer. The modification then took place with a basic
function with output data in a second integer line buffer. The result had to be transferred from this
second buffer back to pixel memory. To copy the data from image data memory to line buffers and
back functions like blrdb() and blwrb() were used. As a result, all functions could only work on
images with even start address st and even number of horizontal pixels dx.
With the new TI philosophy, this restriction does not apply. All regions of interest may start wherever
they want and the size may be arbitrary within reasonable bounds, because blrdb() and blwrb()
are no longer used. For the new philosophy, no copying of image data is necessary, which also
improves the speed performance of the functions. Basic functions now operate directly on image data.

Functions working on runlength code

This is where the major changes have been done. A pointer to RLC is no longer a long variable.
Instead it is a U16 *, which it is supposed to be. In addition, the RLC address itself is no longer half the
value of the corresponding memory address, it is just the memory address and nothing else. As in the
case for the image variables, all unnecessary data copying was avoided.
The following example may be helpful:

ADSP version:

image a = { 0L, 752, 582, 768};
long rlc;

a.st = (long)getvar(CAPT_START);

rlc = (long)vcmalloc(0x10000);

if(rlcmk(&a, 128, rlc>>1, 0x10000L) != 0L)
 rlcout(&a, rlc>>1, 0, 255);

vcfree((int *)rlc);

TI version:

image a = { 0L, 640, 480, 768};
U16 *rlc;

a.st = (long)getvar(CAPT_START);

rlc = (U16 *)vcmalloc(0x10000); /* 0x10000 * 4 bytes of memory */

if(rlcmk(&a, 128, rlc, 0x40000) != NULL)
 rlcout(&b, rlc, 0, 255);

vcfree((int *)rlc);

What can also be seen is that for the RLC size now bytes instead of integers are used.

Software documentation - Image processing library for VC cameras Page 3 15/12/04

Vision Components, Ettlingen

Basic functions

All basic functions for image variables and RLC had to be changed. They now operate directly on U8
pixels or U16 RLC data. Basic functions have been taken off this documentation. They are most
promising for future speed improvements and will be included in a different library called FLIB (Fast
Library)

Contour functions:

Like for RLC, the pointer for the resulting contour code has been changed from long to U32 *, which
results in U32 *dst for the new contour() function. Like for the RLC, addreses to contour code are
now “real” addresses, not addresses divided by 2 as it was the case for the old version. Contour Code
is now stored as byte values (instead of integers) which reduces memory requirement by a factor of 4.
Please keep in mind that there always must be 16 additional bytes of memory available for contour
length, error code and position of contour start.
The following example may be helpful:

ADSP version:

image a = {0L, 256, 256, 768};
int x0, y0=200;
long dest, cc;

a.st = (long)getvar(CAPT_START);

cc=(long)vcmalloc(1005); /* allocate space for contour code */
dest=cc/2;

x0=cfind(&a, y0, 128); /* find contour start */

if(x0!=0)
 {
 contour8(&a, x0, y0, ~2, 128, 1000, &dest);
 }

cdisp_d(&a, cc/2, 255);
vcfree((int *)cc);

TI version:

image a = {0L, 256, 256, 768};
int x0, y0=200;
U32 *dest, *cc;

a.st = (long)getvar(CAPT_START);

cc=(long)vcmalloc(256+16); /* allocate space for contour code */
dest=cc; /* 1000 bytes for CC + 16 bytes */
 /* for size, error code and x0, y0 */

x0=cfind(&a, y0, 128); /* find contour start */

if(x0!=0)
 {
 contour8(&a, x0, y0, ~2, 128, 1000, &dest);
 }

cdisp_d(&a, cc, 255);

vcfree((int *)cc);

Software documentation - Image processing library for VC cameras Page 4 15/12/04

Vision Components, Ettlingen

Pixellist functions:

Pixellist functions are not part of VCLIB 2.0 but of VCRT. In order to account for the new programming
philosophy new pixellist functions have been added to VCLIB 3.0. These are:

ad_calc32
rp_list32
wp_list32
wp_set32
wp_xor32

The new graphics functions like frame() or line() rely on the new pixellist functions, but this fact is
hidden inside these functions.
If you use the old pixellist functions (of VCRT), it is recommended to change to the new ones in order
to make advantage of some possible future routines using pixel lists.

Functions returning long:

Several functions return long values in VCLIB 2.0. Those have been changed to U32
The following functions have been changed:

histo(): uses U32 array instead of long array for result.
mean(), focus(), variance(), arx(), arx2() return their result as U32 instead of long

Summary: Changes necessary to use VCLIB 3.0 for existing programs:

Functions for image variables No changes
Functions for RLC Change all RLC pointers from long to U16 *
 Change all numerical values from half addresses to real addresses
 Change the maximum size for call of rlcmk() from integer to byte

(factor 4)
Functions for Contour Code Change CC pointers from long to U32 *
 Change all numerical values from half addresses to real addresses
 Change the maximum size for contour8() from integer to byte

(factor 4)
Basic functions Contact VC
Pixellist functions It is recommended, but not necessary to change to the new

functions with different names
Functions returning long change definition for result or use cast

Software documentation - Image processing library for VC cameras Page 5 15/12/04

Vision Components, Ettlingen

General comments on the image processing library

Image processing involves relatively large amounts of data. A video image of the size 512x512 pixels
requires 256 KBytes of memory, an image with 740x574 pixels requires 415 KBytes, and a high-
resolution image of the size 1024x1024 pixels even requires 1 MByte of memory. This fact naturally
affects computing time.
Let’s assume some format-filling image operation requires only one microsecond per pixel. Then, a
512x512 image requires 262 msec, a 740x574 image requires 425 msec, and a format of 1024x1024
requires around 1 sec. This is unacceptable in many cases, especially in industrial image processing.
Naturally, one can try to work around this problem by use of faster and faster processors. On the other
hand, technical progress which produces faster processors also produces higher-resolution sensors.
This comparison illustrates the problem well. If the clock rate of a processor is doubled, it will work
twice as fast (assuming a double-speed memory). However, if the format of a sensor changes from
512x512 to 1024x1024, this is four times as much.
For this reason, there are some rules for developing fast image processing programs

1. Avoid format-filling image processing
2. Use optimized programs
3. Use processes which are as simple as possible
4. To the extent possible, make calculations beforehand
5. Use run length codes for binary images

Avoid format-filling image processing

In most cases, it is not necessary to evaluate all pixels of an image, even though their existence, i.e.,
a high resolution, is often very useful.
Numerous examples will be provided below which illustrate how this can be done.
Knowledge of the problem to be solved is of vital importance. If certain pixels are unimportant for a
particular task, then they do not need to be evaluated. With this method, the computing speed can
often be increased several thousand times.

Use optimized programs

The programs included in the library described here are almost all highly optimized assembly
language programs. Thus, in many cases it pays to find a way to create the desired image processing
program from library calls, even if the required algorithm cannot be found in the library. In most cases,
this is better than writing your own program in C.

Use processes which are as simple as possible

Complicated algorithms tend to require a lot of processor time. If this is not possible, at least try to use
a combination of simple steps.

To the extent possible, make calculations beforehand

Many calculations can be made beforehand, and the results can be saved in tables. This includes, for
example, trigonometric functions which can be calculated from a table faster than from an algorithm.
Also, in many cases image coordinates can be converted to video memory addresses beforehand.

Software documentation - Image processing library for VC cameras Page 6 15/12/04

Vision Components, Ettlingen

Use run length code for binary images

Many programs in this library work with run length code (described in detail below).
In many cases, the use of run length code (specifically for binary images) can increase the evaluation
speed several fold. Only the function which creates run length code from a gray-scale image requires
some processing time.

Methods for avoiding format-filling image processing

1. Areas of Interest
2. Forgoing high resolution
3. One dimensional instead of two-dimensional image processing

Areas of Interest

This procedure limits itself to the relevant image sections (windows, areas of interest). E.g., in a
relatively large image section first the position of an object could be determined. Depending on this
search, much smaller windows are calculated. The presence, for instance, of a bored hole or a bar
code could be evaluated with these windows.
This relatively simple procedure often increases speed considerably. Remember that the number of
pixels in a square window increases with the square of the length of one side. A window with a side
100 pixels long has an area of only 10000 pixels, while one with a side of 1000 pixels has an area of a
million pixels. That is one hundred times more!

Forgoing high resolution

Some operations do not need the full resolution of the image. As an example, if you want to look for an
object which a certain known minimum size, then it suffices to include every other, every fourth, or
more generally every nth pixel in the search. This effect can be used horizontally as well as vertically,
so the acceleration is n2.

One dimensional instead of two-dimensional image processing

One-dimensional image processing includes the following procedures:

- Edge sampling - a sudden change of brightness is located along on a line (one-dimensional).
- Contour following - the contour of an object is a one-dimensional structure, even if it is very

jagged due to poor image quality.

For edge sampling, the maximum number of pixels to be examined is the number of pixels in the
image diagonal (and it is only this number under difficult circumstances). As a rule, a few hundred
pixels are evaluated in such cases.

For contour following, experience shows a few thousand pixels are evaluated (in seldom cases, up to
ten thousand pixels).

In both cases, the number of pixels to be evaluated is much less than for a full frame, even though the
algorithms used here are often somewhat more complex.

Software documentation - Image processing library for VC cameras Page 7 15/12/04

Vision Components, Ettlingen

Important image processing data structures

1. Gray-scale images/image windows
2. Color images
3. Binary images in run length code (RLC)
4. Labelled run length code (SLC)
5. image variables
6. Address lists (pixel lists)
7. Contour code (CC)
8. JPEG data (JPG)

Gray-scale images/image windows

Gray-scale images are usually saved as two-dimensional arrays (unsigned char).
Since computer memories always have a linear structure, the video data is saved in sequence, pixel
for pixel, line for line. It is possible for a gap of exactly identical length to occur between the individual
lines (e.g. when taking and showing an image). The address of a pixel can then be calculated with the
following formula:

long addr, startad;
addr = startad + (long) y * PITCH + (long) x;

Here, startad is the start address of the video memory area, x and y are the coordinates of the pixel
(in image processing, the origin is in the upper left corner of the image, the x-axis corresponds to the
usual mathematical convention, while the y-axis is pointed down in contrast to the convention).
The constant PITCH is the of the address of two vertically adjacent pixels.
Access functions are used to access the pixels of the image array. These functions are described in
detail in the VC/RT documentation.

Image

vertical address
difference of
adjacent
pixels = PITCH

y

x

Images and image windows are described by means of so-called image variables, which are
described in detail below.

Color images

Color image processing and the corresponding data structures are described in the documentation of
the color library.

Software documentation - Image processing library for VC cameras Page 8 15/12/04

Vision Components, Ettlingen

Run length code (RLC)

Probably the best known use of the run length code (RLC) is for telefax. In contrast, RLC is used in
image processing not to reduce the amount of information but rather due to the execution speed of the
RLC-based programs. For this reason, the run length code used in image process has a slightly
different structure than for telefax.

As a matter of principle, RLC is especially suited for binary images, or - in modified form - for images
with few quantization steps (a maximum of 16). If there are too many quantization steps, there is the
potential hazard that encoding in RLC will not reduce the amount of information of the original image
but quite the opposite might actually increase the amount of information. The reduction in the amount
of information is the reason why RLC-based programs run faster.

The following will assume RLC for a pure binary image. The RLC is created by proceeding from left to
right, line by line. Each change from dark to bright or from bright to dark produces an entry in the run
length code. The pixel position of the change is stored. If a line begins with white, then an entry is
created even for pixel 0. If the line begins with black, then the earliest change can be at pixel 1. An
end-of-line mark is entered at the end of the line, independent of the number of changes in the line.
The end-of-line mark is always the last possible pixel position in the line plus 1. Or, stated another
way, it is the line width. (Note: the first pixel is numbered 0, the last one is (line width - 1))

The end-of-line mark can vary for different run length codes, so to make sure, it is entered before the
actual run length code, as is the number of lines.

Pixel position
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

object actual image
window margin

white

black

Entry no. RLC Remark

1 0 SLC address LSW (0 for unlabelled RLC)
2 0 SLC address MSW (0 for unlabelled RLC
3 18 dx = end-of-line mark
4 25 dy = number of image/image window lines
5 -1 line begins white (0 if line starts black)
6 5 first change from white to black at position 5
7 11 change from black to white at position 11
8 18 end-of-line mark, because image window margin reached
9 ... RLC entries for next line

The SLC address mentioned at the beginning of this example is described below. It is always 0L for
unlabelled RLC.

Software documentation - Image processing library for VC cameras Page 9 15/12/04

Vision Components, Ettlingen

Labelled run length code (SLC)

The labelled run length code contains the segment label code (SLC) in addition to the pure image
information of the RLC. The SLC stores information on how the image areas relate to one another.

For example, the example used in the last chapter (figure) consists of two common image areas, the
(black) object and the (white) background.

The SLC does not differentiate between objects and background. Thus, in both cases we speak of
objects.

The SLC is the result of object labeling.

The SLC requires the same amount of memory as the RLC it is based on. The base address of the
SLC is arbitrary, as it is entered in the RLC. However, it is recommended to save the SLC directly
behind the RLC.

The first entry of the SLC is the number of contained objects, followed by an object number for each
RLC entry which always begins with 0.

The SLC for the example of the last chapter is as follows:

Entry no. SLC Remark

1 2 total number of objects (including the background)
2 0 background = object 0
3 1 black object = object 1
4 0 background = object 0
5 --- dummy
6 ... SLC entries for next line

example: labelled RLC (2 lines)

address code (U16) comment
0xA0000000 0x0018 SLC address (LSW)
0xA0000002 0xA000 SLC address (MSW)
0xA0000004 18 dx
0xA0000006 25 dy
0xA0000008 -1 color
0xA000000A 5
0xA000000C 11
0xA000000E 18 end_of_line
0xA0000010 -1 color
0xA0000012 6
0xA0000014 12
0xA0000016 18 end_of_line
0xA0000018 2 number of objects
0xA000001A 0 object 0 (white)
0xA000001C 1 object 1 (black)
0xA000001E 0
0xA0000020 0 ---- dummy
0xA0000022 0 object 0 (white)
0xA0000024 1 object 1 (black)
0xA0000026 ...

Software documentation - Image processing library for VC cameras Page 10 15/12/04

Vision Components, Ettlingen

Address lists (pixel lists)

For one-dimensional image structures, it is often recommendable to use so-called pixel lists. Such a
list contains both the (x,y) coordinates of the pixels and the video memory addresses of the pixels.
The latter can serve to save processor time. The (x,y) coordinates or addresses can also be stored
together with the gray scales of the corresponding pixels.

Contour code (CC)

The contour code (CC) is a method for storing one-dimensional contour data of (closed) object
contours or edge data (not closed). Instead of storing the x and y coordinates of all contour pixels, the
contour code stores a differential 3 bit information, indicating the direction of movement from one pixel
to the next in the contour list. With this data structure only the x and y coordinates of the starting point
must be given in order to reconstruct the contour.

edge

edge contour
(not closed)

white
black

object

closed object
contour

white

black

different types of contours

 7 0 1
 6 X 2
 5 4 3

up

right

down

left

0 up
1 up right
2 right
3 down right
4 down
5 down left
6 left
7 up left

contour code values (0 - 7) and the four major directions

example of the CC data format:

byte offset: CC Remark

0 00000004 length (4 contour pixels)
4 00000020 CC status (32: space exhausted)
8 00000018 starting pixel x coordinate
12 00000025 starting pixel y coordinate
16 00 CC: up
17 07 CC: up_left
18 00 CC: up
19 01 CC: up_right

Software documentation - Image processing library for VC cameras Page 11 15/12/04

Vision Components, Ettlingen

CC status:

The generation of contour code may terminate due to different stop conditions. If an object contour is
followed, the code generation will usually stop when the starting pixel is reached in the same direction.
(Pixels may be in the contour list more than once, but only once for each direction). The code
generation will also stop, if a corner of the image variable is reached or if the space for the contour list
is exhausted.
The stop condition is stored in the CC status word in the header of the contour code according to the
following table:

1 : closed contour (end pixel = starting pixel / same direction)
2 : contour stops at left corner of image variable
4 : contour stops at right corner of image variable
8 : contour stops at upper corner of image variable
16 : contour stops at lower corner of image variable
32 : space exhausted (CC lenght > lng)

Some of the conditions could be true at the same time. (example: contour stops at the left upper
corner of the image variable) In this case the individual codes will be added (example: 2+8 = 10)

Connectedness

When dealing with binary objects, the principle of how objects are connected is important.

Some people consider pixels to belong to the same object only if they have neighbors of that object in
one of the 4 major directions. The object is then called 4-connected. If you allow all 8 directions, it is
called 8-connected.

1 0 0
0 1 1
1 1 1

example: all white pixels (1 = white) are 8-connected but not 4-connected

JPEG data (JPG)

JPEG is a standard for still image compression. The images may be stored at an arbitrary
compression rate. There is some loss of information: the higher the compression rate the higher the
image degradation due to loss of information. We recommend using quality factors of 50% - 80% for
high quality images at reasonable compression rates.

Since JPEG is a standard it may be used for exchanging image data with e.g. a PC. Standard PC
programs comply with the format used in this library. Please be sure to store images as grey-level
images since this color compression / decompression is not supported.

Image variables used in JPEG compression must have a format which is a multiple of 8 for both, dx
and dy. When decompressing images image variables must have a size of at least the size of the
JPEG image - otherwise no decompression will be preformed.

Software documentation - Image processing library for VC cameras Page 12 15/12/04

Vision Components, Ettlingen

Overview of the library functions

1) Macros
2) Programs for processing gray images
3) Gray scale correlation routines
4) Programs for JPEG compression / decompression
5) Programs for processing binary images in run length code (unlabelled)
6) Programs for processing binary images in run length code (labelled)
7) Programs for processing contour code (CC)
8) Graphics functions
9) Basic functions for experienced programmers

Appendix A: Description of sample programs
Appendix B: List of the library functions

Software documentation - Image processing library for VC cameras Page 13 15/12/04

Vision Components, Ettlingen

Macros

The file macros.h contains macros that are useful for working with the library. It is not necessary to
use these macros, but it may turn out to be convenient.
The following types of macros are available:

• definition of bits, bytes, words, pages
• aliases for video modi
• conversion macros
• image variable macros
• screen macros
• overlay macros
• utility macros

Some macros (screen macros) use conventions for physical and logical addresses. There is, again,
no obligation to use these conventions and the according macros.

1. macros for bits, bytes, words, pages

#define BitsPerByte 8
#define BitsPerWord 32
#define BytesPerWord 4
#define BytesPerPage 1

2. aliases for video modi (for function vmode())

#define vmLive (0) live image (including DRAM update)
#define vmStill (1) still image
#define vmLiveRefresh (2) live image (including DRAM update)
#define vmFreeze (3) still image
#define vmOvlLive (4) live image + overlay
#define vmOvlStill (5) still image + overlay
#define vmOvlLiveRefresh (6) live image + overlay
#define vmOvlFreeze (7) still image + overlay

3. conversion macros

#define BitsAsBytes (bits) number of bytes per bits
 ((bits)/(BitsPerByte))
#define BitsAsWords (bits) number of words per bits
 ((bits)/(BitsPerWord))
#define ByteAddrAsBitAddr (addr) Overlay address above screen address
 (addr)
#define BitAddrAsByteAddr (addr) screen address below Overlay address

(addr)

Software documentation - Image processing library for VC cameras Page 14 15/12/04

Vision Components, Ettlingen

4. image variable macros

assignment of a whole image variable in just one statement

#define ImageAssign (a,newst,newdx,newdy,newpitch)
{(a)->st=(long)(newst);(a)->dx=(I32)(newdx);(a)->dy=(I32)(newdy);
 (a)->pitch=(I32)(newpitch);}

display the values of an image variable for debugging

#define ImagePrintMembers (text,a) print(text);
print("st=0x%lx(%ld),dx=%d,dy=%d,pitch=%d\n",(a)->st,
(a)->st,(a)->dx,(a)->dy,(a)->pitch)

address of pixel on image variable

#define ImageAddr (a,x,y) ((long)((a)->st+(x)+(y)*(a)->pitch))

set a pixel to value at coordinates relative to an image variable

#define ImageSetPixel (a,x,y,g)
(*((U8 *)(ImageAddr((a),(x),(y)))) = (U8)(g))

get the value of a pixel at coordinates relative to an image variable

#define ImageGetPixel (a,x,y)
(*((U8 *)(ImageAddr((a),(x),(y))))

5. screen macros

#define ScrGetRows number of screen rows
 getvar(VWIDTH)
#define ScrGetColumns number of screen columns
 getvar(HWIDTH)
#define ScrGetPitch pitch (in bytes)
 getvar(VPITCH)
#define SizeOfScreen size of the screen in bytes
 (ScrGetPitch*ScrGetRows)

#define DispGetRows number of display rows
 getvar(DVWIDTH)
#define DispGetColumns number of display columns
 getvar(DHWIDTH)
#define DispGetPitch pitch (in bytes)
 getvar(VPITCH)

Software documentation - Image processing library for VC cameras Page 15 15/12/04

Vision Components, Ettlingen

logical and physical addresses

 Screen 1
DRAM : Overlay 1

physical screen page: screen that is displayed
logical screen page: screen start page that is used for address calculations
physical overlay page: overlay that is displayed (if overlay video mode active)
logical overlay page: overlay start page that is used for address calculations

There’s just one physical page but there may be multiple logical pages.

#define ScrGetPhysPage actual physical page being displayed right now
 getvar(CAPT_START)
#define ScrSetPhysPage (phys) display of screen page (set physical page)
 setvar(DISP_START,(addr)); setvar(CAPT_START,(addr));
#define ScrGetLogPage actual logical page being worked on
 getvar(SCRLOGPAGE)
#define ScrSetLogPage (log) set logical page
 setvar(SCRLOGPAGE,(addr))

#define ScrGetDispPage actual display page

getvar(DISP_START)
#define ScrSetDispPage (addr) set display page

setvar(DISP_START,(addr))
#define ScrGetCaptPage actual capture page

getvar(CAPT_START)
#define ScrSetCaptPage (addr) set capture page

setvar(CAPT_START,(addr))

#define ScrByteAddr (x,y) (logical) screen address at coordinates (x,y)
 ((long)(ScrGetLogPage+(x)+(y)*ScrGetPitch))
#define ScrSetPixel (x,y,value) set pixel at (logical) coordinates (x,y) to value
 (*((U8 *)(ScrByteAddr(x,y))) = (U8)(value))
#define ScrGetPixel (x,y) get value of pixel at (logical) coordinates (x,y)
 (*((U8 *)(ScrByteAddr(x,y)))
#define ScrGetX (addr) x-coordinate of (logical) address
 ((U32)(addr)-(U32)ScrByteAddr(0,0))%ScrGetPitch
#define ScrGetY (addr) y-coordinate of (logical) address
 ((U32)(addr)-(U32)ScrByteAddr(0,0))/ScrGetPitch

Screen 2

System Data

Data 1

Software documentation - Image processing library for VC cameras Page 16 15/12/04

Vision Components, Ettlingen

6. overlay macros

#define OvlGetColumns number of overlay columns
 ScrGetColumns
#define OvlGetRows number of overlay rows
 ScrGetRows
#define OvlGetPitch overlay pitch (in bits)
 ScrGetPitch
#define OvlGetPhysPage overlay page being displayed right now
 getvar(OVLY_START)
#define OvlSetPhysPage (phys) display of overlay page (set physical overlay page)
 setvar(OVLY_START,phys)
#define OvlGetLogPage overlay page being worked on
 getvar(OVLLOGPAGE)
#define OvlSetLogPage (log) set logical overlay page
 setvar(OVLLOGPAGE,(log))
#define OvlBitAddr (x,y) overlay address at the (logical) coordinates (x,y)
 OvlByteAddr(x,y)
#define OvlByteAddr (x,y) overlay address at the (logical) coordinates (x,y)
 ((long)OvlGetLogPage + (long)(x)+(long)(y)*OvlGetPitch)
#define OvlSetPixel (x,y,value) set/clear an overlay pixel at (logical) coordinates (x,y)
 wovl(value,OvlBitAddr((x),(y)))
#define OvlGetPixel (x,y) get value of overlay pixel at (logical) coordinates (x,y)
 rovl(OvlBitAddr((x),(y)))
#define OvlGetX (addr) x-coordinate of overlay pixel
 ((long)(addr)-OvlBitAddr(0,0))%OvlGetPitch
#define OvlGetY (addr) y-coordinate of overlay pixel
 ((long)(addr)-OvlBitAddr(0,0))/OvlGetPitch
#define OvlClearAll clear whole (logical) Overlay
 {image ovl;ImageSet(&ovl,BitsAsBytes(Overlay.st),
 BitsAsBytes(OvlGetColumns),OvlGetRows,BitsAsBytes(OvlGetPitch));
 set(&ovl,0);}

Software documentation - Image processing library for VC cameras Page 17 15/12/04

Vision Components, Ettlingen

7. utility macros

#define getchar input a char via RS232
 rs232rcv
#define putchar output a char via RS232
 rs232snd
#define kbhit () key pressed ?
 (-1 != rbempty())

#define DRAMScreenMalloc () allocates memory for one screen page (not aligned)

((int)sysmalloc(((SizeOfScreen)+1024+BytesPerWord-
1)/BytesPerWord,MIMAGE))

#define DRAMDisplayMalloc () allocates memory for one display page (not aligned)

((int)sysmalloc((DispGetPitch*DispGetRows+1024+BytesPerWord-
1)/BytesPerWord,MIMAGE))

#define DRAMOvlMalloc () allocates memory for one overlay page (not aligned)

DRAMScreenMalloc()

Software documentation - Image processing library for VC cameras Page 18 15/12/04

Vision Components, Ettlingen

Programs for processing gray images

set set image variable to a constant value
copy copy an image variable
histo histogram of an image variable
img2 link two image variables
imgf any 3 x 3 operator of an image variable
ff3 3 x 3 filter with any mask
ff5 5 x 5 filter for image variable
ff5y 5 x 5 filter for image variable horizontal / vertical separation
robert robert’s cross operator of an image variable
projh horizontal projection of an image variable
projv vertical projection of an image variable
look look-up table function
focus calculate the focal value of an image variable
mean calculate the mean value of an image variable
variance calculate the variance of an image variable
pyramid pyramid filter for image variable
subsample subsample image (image variable)
arx calculate the number of pixels above threshold of image variable
arx2 calculate the number of pixels between two thresholds of image variable
bin0 fast binarization of an image variable
avg moving average or unsharp masking of an image variable

Image variable

The image variable is a struct which summarizes all information required to characterize a gray-scale
image or an image window.

Here is the definition of the image variables:

typedef struct
 {
 long st; /* start address */
 int dx; /* horizontal width */
 int dy; /* vertical width */
 int pitch; /* memory pitch */
 } image;

st is start address of the image or image window in the memory (byte address).
dx and dy are the horizontal and vertical size of the image/image window.
pitch is the of the address difference of two vertically adjacent pixels (above one another).

With the current version of the library, it is no longer necessesary that start address and
horizontal width of an image variable must be even numbers. All parameters of an image
variable may be arbitrary numbers.

Software documentation - Image processing library for VC cameras Page 19 15/12/04

Vision Components, Ettlingen

Sample image variables

1. The pattern of a part is to be stored in a gray image with the size 256(h) x 128(v).

#include <vclib.h>

main()
{
image a = {0L, /* start address */
 256, /* dx */
 128, /* dy */
 256}; /* pitch */

a.st = (long)(getvar(CAPT_START)); /* assign start of image */
 /* to address of capture */
 /* memory buffer */
...

Selecting 256 for pitch produces a tight version of the image in memory, without gaps. This is not
always the case. When pictures are taken, the resulting image sometimes contains gaps, meaning
that pitch is greater than dx. However, pitch may never be smaller than dx.

2. A full frame (a) is assumed to have a size of 640(h) x 480(v) with a pitch of 640. Two partial images
(b, c) with a size of 128(h) x 128(v) are to be defined in this full frame. The partial images will later be
used to evaluate the image.

#include <vclib.h>
#define PITCH_A 640

main()
{
image a, b, c;

ImageAssign(a,(long)(getvar(CAPT_START)), 640, 480, PITCH_A);
ImageAssign(b, a.st + 100L*PITCH_A + 200L, 128, 128, PITCH_A);
ImageAssign(c, a.st + 200L*PITCH_A + 300L, 128, 128, PITCH_A);

The upper left corner of the image window b is located at position (200,100) of the full frame a. The
upper left corner of the image window c is located at position (300,200).

If it is desired, for example to set the contents of the image variable c to the constant value 255
(white), this can be done with the following function call:

set(&c,255);

3. You may also use pitch with a value twice as large as normal in order to access half images. The
start address will then determine which half image is processed.

4. The pitch for the capture and display memory of the camera can be retrieved from a system
variable called VPITCH (video pitch):

#include <sysvar.h>

pitch = getvar(VPITCH);

Software documentation - Image processing library for VC cameras Page 20 15/12/04

Vision Components, Ettlingen

set set image variable to a constant value

synopsis void set(image *a, int x)

description The function set() sets all pixels of an image variable to the constant value

x.

memory none

copy copy an image variable

synopsis void copy(image *a, image *b)

description The function copy copies the contents of the image variable a to b.

 If the format of the image variable (dx, dy) is not identical, the format of the

result variable b is used. In particular, this means that the result of the
operation is not defined if the image format of a is smaller than that of b.

 (a->dx < b->dx or a->dy < b->dy)

 You are recommended to work with identical image formats, i.e.
 a->dx = b->dx and a->dy=b->dy

memory none

histo histogram of an image variable

synopsis void histo(image *a, U32 hist[256])

description The function histo calculates the histogram of the image variable a.
 The histogram is the absolute frequency of the 256 different gray scales in an

image/image window.
 In addition to the image variable a, a pointer to an array with 256 values is

passed to the function. After calling the function, the result can be taken from
this array.

memory none

see also mean(), variance()

Software documentation - Image processing library for VC cameras Page 21 15/12/04

Vision Components, Ettlingen

img2 link two image variables

synopsis void img2(image *a, image *b, image *c,
 void (*func)(),int q)

description The function img2() makes it possible to calculate any links of the two image

variables a and b. The result is stored in the image variable c, which can be
identical with a or b or both.

 If the format of the image variables (dx, dy) is not identical for all three image

variables, then the format of the result variable c is used. In particular, this
means that the result of the operation is not defined if the image format of a or
b is smaller than that of c.

 (a->dx < c->dx or a->dy < c->dy or b->dx < c->dx or b->dy < c->dy)

 You are recommended to work with identical image formats, i.e.
 a->dx = b->dx = c->dx and a->dy=b->dy=c->dy

 q is a parameter which is passed to the basic function func().

 The nature of the link is specified by providing a pointer to the basic function
to
 be executed. For the available basic functions there are macros (#define

instructions), which make it easier to call the function.

 The following macros are available:

Call operation function
add2(a,b,c,sh) sh>0: c = (a + b)<<sh; sh<0: c = (a + b)<<-sh add2f()
sub2(a,b,c) c = abs(a-b) sub2f()
max2(a,b,c) c = max(a,b) max2f()
min2(a,b,c) c = min(a,b) min2f()
and2(a,b,c) c = a AND b and2f()
or2 (a,b,c) c = a OR b or2f()
xor2(a,b,c) c = a XOR b xor2f()
subx2(a,b,c,offs) c = (a - b + offs); clipping if c>255 or c<0 sub2x()
suby2(a,b,c) c = (a – b)>0 ? 255 : 0 sub2y()

 Of course, you can write your own basic functions. Pass their address

(function pointer) to img2().

example The following example subtracts two image variables from one another. The

result is stored in the image variable b.

 #include <vclib.h>
 #include <flib.h>

 main()
 {
 image a, b;

ImageAssign(a,(long)(getvar(CAPT_START)),256,256,768);
ImageAssign(a, a.st + 256L,256,256,768);

 sub2(&a, &b, &b);

memory none

Software documentation - Image processing library for VC cameras Page 22 15/12/04

Vision Components, Ettlingen

imgf arbitrary 3 x 3 operator of an image variable

synopsis void imgf(image *a, image *b, void *func())

description The function imgf() makes it possible to calculate any arbitrary 3 x 3 filter

operation of the image variable a. The result is stored in the image variable b,
which may be identical with a.

 If the format of the image variables (dx, dy) is not identical, then the format of

the result variable b is used. In particular, this means that the result of the
operation is not defined if the image format of a is smaller than that of b.

 (a->dx < b->dx or a->dy < b->dy)

 It is recommended to work with identical image formats, i.e.
 a->dx = b->dx and a->dy=b->dy

 The nature of the filter operation is specified by providing a pointer to the

basic function to be executed.

 For the available basic functions there are macros (#define instructions),

which make it easier to call the function.

 The following macros are available:

 Call Basic function

 sobel(a, b) sobelf()
 laplace(a, b) laplacef()
 mx(a, b) maxf()
 mn(a, b) minf()

 Of course, you can write your own basic functions. Pass their address

(function pointer) to imgf().

example The following example calculates the Sobel operator of the image variable.

The result is also stored in a and overwrites the original contents of a.

 #include <vclib.h>
 #include <flib.h>

 main()
 {
 image a;

ImageAssign(a,(long)(getvar(CAPT_START)),256,256,768);

 sobel(&a, &a);

 ...

memory none

see also ff3(), ff5(), robert()

Software documentation - Image processing library for VC cameras Page 23 15/12/04

Vision Components, Ettlingen

sobel Sobel filter routine (macro)

synopsis void sobel(image a, image b)

description The function sobel() calculates the Sobel filter.

 The Sobel filter is calculated with the following masks:

1 0 -1
2 0 -2
1 0 -1

1 2 1
0 0 0
1 2 1

 The convolution with both masks is executed, the absolute values of both

results are added, and the result is divided by 4.

sobel() is a macro which calls imgf() with basic function sobelf() as an
argument.

laplace Laplace filter routine (macro)

synopsis void laplace(image a, image b)

description The function laplace() calculates the Laplace filter.

 The Laplace filter is calculated with the following mask:

0 1 0
1 -4 1
0 1 0

 The convolution with the mask is executed, the magnitude is calculated, and
the result is divided by 4.

laplace() is a macro which calls imgf() with basic function laplacef()
as an argument.

mx maximum filter routine (macro)

synopsis void mx(image a, image b)

description The function mx() calculates the maximum filter.

 The maximum filter is calculated as follows:
 The pixel with the maximum gray scale in a 3x3 window is found.
 The value of this pixel is used as the result of the filter.

mx() is a macro which calls imgf() with basic function maxf() as an
argument.

Software documentation - Image processing library for VC cameras Page 24 15/12/04

Vision Components, Ettlingen

mn minimum filter routine (macro)

synopsis void mn(image a, image b)

description The function mn() calculates the minimum filter.

 The minimum filter is calculated as follows:
 The pixel with the minimum gray scale in a 3x3 window is found.
 The value of this pixel is used as the result of the filter.

mn() is a macro which calls imgf() with basic function minf() as an
argument.

ff3 3 x 3 filter with arbitrary mask

synopsis void ff3(image *a, image *b, int c[3][3], int sh)

description The function ff3() makes it possible to calculate 3 x 3 filter operations of the

image variable a. In contrast to imgf(), this is always a convolution with a
3x3 mask.

 The two-dimensional array c[3][3] contains the coefficients for the

convolution.

 Mask:

 c11 c12 c13

c21 c22 c23
c31 c32 c33

 The convolution with the mask is executed, the magnitude is calculated, and

the result is shifted sh bits.
 sh=0 means no shift, sh=1 means multiply by 2, sh=-1 is equivalent to

dividing by 2, etc.

memory none

see also imgf(), ff5(), robert()

Software documentation - Image processing library for VC cameras Page 25 15/12/04

Vision Components, Ettlingen

ff5 5 x 5 filter for image variable

synopsis void ff5(image *a, image *b, int c[5][5], int sh)

description The function ff5() performs the 5 x 5 filter operation of image variable a with
 arbitrary mask c[5][5]. The result is stored in image b.

 The two-dimensional array c[5][5] contains the coefficients for the

convolution mask.

 Mask:

c00 c01 c02 c03 c04
c10 c11 c12 c13 c14
c20 c21 c22 c23 c24
c30 c31 c32 c33 c34
c40 c41 c42 c43 c44

 The convolution with the mask is executed, the magnitude is calculated, and

the result is shifted sh bits. sh=0 means no shift, sh=1 means multiply by 2,
sh=-1 is equivalent to dividing by 2, etc.

example static int c[5][5];

 /* Mask: */

 c[0][0]=1; c[0][1]=0; c[0][2]=0; c[0][3]=0; c[0][4]=-1;
 c[1][0]=1; c[1][1]=0; c[1][2]=0; c[1][3]=0; c[1][4]=-1;
 c[2][0]=1; c[2][1]=0; c[2][2]=0; c[2][3]=0; c[2][4]=-1;
 c[3][0]=1; c[3][1]=0; c[3][2]=0; c[3][3]=0; c[3][4]=-1;
 c[4][0]=1; c[4][1]=0; c[4][2]=0; c[4][3]=0; c[4][4]=-1;

 ff5(&a,&a,&c[0][0],-2);

memory none

see also ff3(), ff5y(), imgf(), robert()

Software documentation - Image processing library for VC cameras Page 26 15/12/04

Vision Components, Ettlingen

ff5y 5 x 5 filter for image variable horizontal / vertical separation

synopsis void ff5y(image *a, image *b, int pm *h,
 int pm *v, int sh)

description The function ff5y() performs a 5 x 5 filter operation of image variable a.
 The filter consists of a 1x5 and a 5x1 mask which are executed in sequence.
 The horizontal 5x1 mask is specified with array h[5], the vertical 1x5 mask is
 specified with array v[5].
 The result of the operation will be stored in image b.
 Horizontal mask:

 h0 h1 h2 h3 h4

 Vertical mask:

v0
v1
v2
v3
v4

 The convolution with both mask is executed, the magnitude is calculated, and

the result is shifted sh bits. sh=0 means no shift, sh=1 means multiply by 2,
sh=-1 is equivalent to dividing by 2, etc.

example static int h[5];
 static int v[5];

 /* Masks: */

 h[0]=1; h[1]=1; h[2]=1; h[3]=1; h[4]=1;

 v[0] = -1;
 v[1] = 0;
 v[2] = 0;
 v[3] = 0;
 v[4] = 1;

 ff5y(&a,&a,h,v,-2);

memory 20*((b->dx)/2 + 1) bytes of DMEM heap

see also ff3(),ff5(),f5hf(),f5vf(),imgf(),robert()

Software documentation - Image processing library for VC cameras Page 27 15/12/04

Vision Components, Ettlingen

robert robert’s cross operator of an image variable

synopsis void robert(image *src, image *dest)

description The function robert() calculates the robert’s cross filter operator of image
 variable src and outputs the result in image variable dest.

 The operator uses the following masks:

1 0
0 -1

 and

0 1
-1 0

 The sum of the absolute values of each mask operation is calculated, the
 result is right-shifted by 1 (divided by 2) and output to the destination image.

memory none

see also sobel(), imgf()

Software documentation - Image processing library for VC cameras Page 28 15/12/04

Vision Components, Ettlingen

projh horizontal projection of an image variable

synopsis void projh(image *a, U32 result[dy])

description The function projh calculates the horizontal projection of a image variable.
 Here, projection means the sum of all pixels in one line.
 The result is stored in the array result[dy]. result[0] is the projection of

the first line, result[1] the projection of the second line, etc.

 Earlier VCLIB version had the restriction: dx<256. This is no longer the
case.

example #include <vclib.h>

#include <flib.h>
 #define A_DY 512

 main()
 {
 image a;

ImageAssign(a,(long)(getvar(CAPT_START)),640,A_DY,768);
 U32 x[A_DY];
 projh(&a, x);
 ...

see also projv()

memory none

projv vertical projection of an image variable

synopsis void projv(image *a, U32 result[dx])

description The function projv calculates the vertical projection of an image variable.
 Here, projection means the sum of all pixels in one column.
 The result is stored in the array result[dx]. result[0] is the projection of

the first column, result[1] is the projection of the second column, etc.

 Earlier VCLIB version had the restriction: dy<256. This is no longer the
case.

example #include <vclib.h>

#include <flib.h>
 #define A_DX 512

 main()
 {
 image a;

ImageAssign(a,(long)(getvar(CAPT_START)),A_DX,480,768);
 U32 x[A_DX];
 projv(&a, x);
 ...

see also projh()

memory none

Software documentation - Image processing library for VC cameras Page 29 15/12/04

Vision Components, Ettlingen

look look-up table function

synopsis void look(image *a, image *b, U32 table[256])

description The function look transforms the image variable a with the aid of a look-up

table function. The result of the operation is stored in image variable b, which
may be identical to a. table is the transformation table, which must have
been created beforehand.

 If the format of the image variable (dx, dy) is not identical, the format of the

result variable b is used. In particular, this means that the result of the
operation is not defined if the image format of a is smaller than that of b.

 (a->dx < b->dx or a->dy < b->dy)

 You are recommended to work with identical image formats, i.e.
 a->dx = b->dx and a->dy=b->dy

 If a pixel initially had the value 0 <= x < 256, then after the transformation with

the function look()its value will be table[x].

memory none

focus calculate the focal value of an image variable

synopsis U32 focus(image *a, I32 sh)

description The function focus calculates the focal value of the image variable a.
 For details of how the focal value is calculated, please refer to the description

of the basic function focusf().
 sh is a shift value to suppress noise.
 sh=0 means no shift, sh=-1 is equivalent to dividing by 2,
 sh=-2 is equivalent to dividing by 4, etc.

 The focal value is calculated according to the following procedure:

 a1 a2
 b1 b2

 a1 and a2 are adjacent pixels in the upper line,
 b1 and b2 are adjacent pixels in the lower line.

 We have: f := ((| | | |) ())a a a b sh1 2 1 1− + − >> −∑

The summation is performed for all ((dx-1)*(dy-1)) pixels of the image
variable.

 Problem:
 The focal value calculated by the above formula depends upon the mean

brightness of the image field used.
 Thus, the formula is only recommended for evaluating the focus if the

individual images used for the comparison have similar values for the mean
brightness.

memory none

Software documentation - Image processing library for VC cameras Page 30 15/12/04

Vision Components, Ettlingen

mean calculate the mean value of an image variable

synopsis U32 mean(image *a)

description The function mean() calculates the mean value of an image variable. The

value is rounded and returned to the calling function.
There is no restriction for the format of the image like for earlier VCLIB
versions. The mean is the sum of all pixel values in the image divided by the
image area.

memory none

see also variance(), histo(), projh(), projv()

variance calculate the variance of an image variable

synopsis U32 variance(image *a)

description The function variance() calculates the statistical variance of an image
 variable. The value is rounded and returned to the calling function.

There is no restriction for the format of the image like for earlier VCLIB
 The variance is the sum of all pixel values squared divided by the image area.
 The variance can be used to measure the contrast, e.g the presence or
 absence of high contrast structures like printing, etc.

memory none

see also mean(), histo(), projh(), projv()

pyramidx pyramid filter for image variable

synopsis void pyramidx(image *a, image *b, void (*func)())

description The function pyramidx() computes the pyramid filter operation of an image
 defined by image variable a. The result is stored in image b.

a1 a2
a3 a4

 Four values of the source image are combined to one pixel of the destination
 image. The nature of the operation is defined by the basic function func().

 The following macros are available:

 Call Basic function

 pyramid(a, b) FL_2x2_Mean_U8P_U8P()
 pyr_max(a, b) FL_2x2_MAX_U8P_U8P()
 pyr_min(a, b) FL_2x2_MIN_U8P_U8P()

 Please note that the result image is smaller by the factor of two in both the
 horizontal and vertical direction.

 The operation may be performed in-place, i.e. a and b may be equal.

memory none

see also pyramid(), pyr_max(), pyr_min(), subsmpl()

Software documentation - Image processing library for VC cameras Page 31 15/12/04

Vision Components, Ettlingen

pyramid pyramid filter for image variable (macro)

synopsis void pyramid(image *a, image *b)

description The function pyramid() computes the pyramid filter operation of an image
 defined by image variable a. The result is stored in image b.

a1 a2
a3 a4

 Four values of the source image are combined to one pixel of the destination
 image according to the following formula:

 result = (a1+a2+a3+a4)/4

pyramid() is a macro which calls pyramidx() with basic function
FL_2x2_Mean_U8P_U8P() as an argument.

pyr_max pyramid filter maximum for image variable (macro)

synopsis void pyr_max(image *a, image *b)

description The function pyr_max() computes the pyramid filter operation of an image
 defined by image variable a. The result is stored in image b.

a1 a2
a3 a4

 Four values of the source image are combined to one pixel of the destination
 image according to the following formula:

 result = max(a1, a2, a3, a4)

pyr_max() is a macro which calls pyramidx() with basic function
FL_2x2_MAX_U8P_U8P() as an argument.

pyr_min pyramid filter minimum for image variable (macro)

synopsis void pyr_min(image *a, image *b)

description The function pyr_min() computes the pyramid filter operation of an image
 defined by image variable a. The result is stored in image b.

a1 a2
a3 a4

 Four values of the source image are combined to one pixel of the destination
 image according to the following formula:

 result = min(a1, a2, a3, a4)

pyr_min() is a macro which calls pyramidx() with basic function
FL_2x2_MIN_U8P_U8P() as an argument.

Software documentation - Image processing library for VC cameras Page 32 15/12/04

Vision Components, Ettlingen

subsample subsample image (image variable)

synopsis void subsample(image *a, image *b, I32 rh, I32 rv)

description The function subsample() copies the image defined by image variable a
 into image variable b and reduces its size.

 rh and rv specify the horizontal (rh) and vertical (rv) subsampling ratio.

 constraints:

 rh, rv > 0

 rh=2 means that every other pixel of an original image line will be taken and
 stored to the result image. The horizontal image witdh of the result image will
 be half the source image width.

example image a = {sta, 512, 512, 768};
 image b = {stb, 128, 128, 768};

 subsample(&a, &b, 4, 4);

memory none

see also pyramid()

arx calculate the number of pixels above threshold of image variable

synopsis U32 arx(image *a, I32 thr)

description The function arx() calculates the number of pixels above the threshold
 thr according to the following equivalent c program:

 int i, cnt=0;

 for(i=0;i<n;i++)
 if(*p++ > thr) cnt++

 return(cnt);

memory none

see also arx2()

arx2 calculate the number of pixels between two thresholds of image variable

synopsis U32 arx2(image *a, I32 th1, I32 th2)

description The function arx2() calculates the number of pixels between the thresholds
 th1 and th2.

memory none

see also arx()

Software documentation - Image processing library for VC cameras Page 33 15/12/04

Vision Components, Ettlingen

bin0 fast binarization of an image variable

synopsis void bin0(image *src, image *dest, I32 thr,
 I32 bl, I32 wt, void *(*fc)());

description bin0() binarizes image src and writes the result to dest, which may be
 equal to src. thr is the threshold, bl the grey value for the display of binary
 „black“, wt the greyvalue for the display of binary „white“.

 fc is a function pointer to the basic binarisation function.

 The following macros are available:

 Call I/O function

 binarize(s, d, t, b, w) binarf1()
 PaintWhite(s, d, t, w) binarf2()
 PaintBlack(s, d, t, b) binarf3()

binarize(): If the pixel value is < thr, the resulting pixel will have the
value given by b, otherwise the value will be w.

 PaintWhite (): If the pixel value is < thr, the pixel value is not changed,
 otherwise the value will be w.

PaintBlack (): If the pixel value is < thr, the resulting pixel will have the
value specified by b, otherwise the value will not be changed.

 Of course, you can write your own basic binarisation functions. Pass their

address (function pointer) to bin0().

memory none

see also look()

Software documentation - Image processing library for VC cameras Page 34 15/12/04

Vision Components, Ettlingen

avg, avg2 moving average or unsharp masking of an image variable

synopsis I32 avg(image *a, image *b, I32 kx, I32 ky,
 void (*func)(), I32 v)

I32 avg2(image *a, image *b, I32 kx, I32 ky,
 void (*func)(), I32 v)

description The function avg() calculates the moving average filter of image variable a
 and stores the result in image variable b.
 The size of the moving average is specified with the values kx
 (horizontal kernel size) and ky (vertical kernel size).
 Images specified by image variables a and b must be different.

 If void (*func)() is zero, the function will calculate the moving average.
 If a function address is given, the original image will be subtracted from the
 moving average, performing an „unsharp masking“ operation.

For avg() the result image will be centered according to the kernel size (kx,
ky), i.e. the (smaller) result image will start at location

b->st + kx/2 + (ky/2) * b->pitch

For avg2() the result will be placed in the left upper corner of b.

The function pointer passed specifies the type of subtraction being performed.

The return value is negative, if an error is encountered.

 The following macros are available:

 Call subtract function

 avgm(a, b, kx, ky) void (*)()0
 maskx(a, b, kx, ky, offset) sub2x()
 masky(a, b, kx, ky) sub2y()
 avgm2(a, b, kx, ky) void (*)()0
 maskx2(a, b, kx, ky, offset) sub2x()
 masky2(a, b, kx, ky) sub2y()

avgm(a,b,kx,ky) moving average
maskx(a,b,kx,ky,offs) b = (a - avg + offs); clipping if c>255 or c<0
masky(a,b,kx,ky) b = (a – avg)>0 ? 255 : 0

Of course, you can write your own subtract functions. Pass their address
(function pointer) to avg().

memory 8 * (dx/2 + 1) bytes of heap memory

see also ff3(), ff5()

Software documentation - Image processing library for VC cameras Page 35 15/12/04

Vision Components, Ettlingen

zoom_up enlargement of an image variable

synopsis void zoom_up (image *a, image *b, I32 factor)

description The function zoom_up() enlarges the pixels in image variable a by factor

and stores the result in image variable a.

If the size of b is not sufficient for this operation the maximum size will be
truncated to the size of b.

memory none

Software documentation - Image processing library for VC cameras Page 36 15/12/04

Vision Components, Ettlingen

Gray scale correlation routines

vc_corr0 small kernel correlation routine / extended search area
vc_corr1 same as vc_corr0()

vc_corr0 small kernel correlation routine / extended search area

synopsis I32 vc_corr0 (image *a, image *b, I32 mcn,

int mcr, I32 *x0, I32 *y0)

description The function vc_corr0() calculates the normalized gray scale correlation

function (NCF) of an image variable a with respect to a correlation kernel or
sample b.

NCF may be a useful tool to find a given pattern (sample) in an image. The
search result depends heavily on the rotation and the size of the pattern. If
more than one pattern similar to the sample is present, the one with the
closest match is found. vc_corr0() is intended for use with small kernels and
small images.

Valid kernel sizes must comply to kx*ky <= 256, e.g. 16x16 or 10x25. The
size of the image (dx,dy) is only limited by heap memory (see below). A good
idea is to zoom down sample and image to be searched in using (multiple)
pyramid() operation(s).

mcn is the minimum required contrast. For mcn=0 the function will find the
pattern regardless of its contrast. This may result in false pattern detections in
almost homogeneous images where no patterns are present. Therefore a
certain minimum contrast is recommended. (local contrast is defined as the
variance of gray values in an image region with the size of the kernel)

mcr is the minimum required correlation coefficient. Values for mcr are in the
range [0..1024] with 0: no correlation and 1024: absolute identity. Negative
correlation coefficients (inverse image) are not supported.

vc_corr0() returns the correlation coefficient for the pattern found. If no
pattern is found (due to low contrast or low correlation) it will return –1.
The function also returns the x0 and y0 coordinates of the closest match.

vc_corr0 is quite fast. The following table gives some benchmark values for
a VC2038 with 150MHz:

 Kernel size (kx*ky) Image size (dx*dy) processing time
16x16 64x64 25 msec
16x16 120x120 100 msec
16x16 160x120 130 msec

memory 8*(dx-kx+1) bytes of heap memory

see also

Software documentation - Image processing library for VC cameras Page 37 15/12/04

Vision Components, Ettlingen

vc_corr1 small kernel correlation routine / extended search area

synopsis I32 vc_corr1 (image *a, image *b, I32 mcn,

I32 mcr, I32 *x0, I32 *y0)

description The function vc_corr1() has been replaced by vc_corr0() for VCLIB 3.0

since the latter provides an extended search area.

see also vc_corr0()

Software documentation - Image processing library for VC cameras Page 38 15/12/04

Vision Components, Ettlingen

Programs for JPEG compression / decompression

fwrite_jpeg write image variable to JPEG image file / flash EPROM
cjpeg encode image variable to JPEG image file
fread_jpeg read JPEG image file / flash EPROM into image variable
djpeg decode JPEG image file into image variable

fwrite_jpeg write image variable to JPEG image file / flash EPROM

synopsis I32 fwrite_jpeg(image *a, char *path,
 I32 quality, U32 maxlng)

description The function fwrite_jpeg() compresses image variable a to JPEG format
 according to the JPEG standard.
 quality is a value between 0 and 100 indicating the resulting image quality.
 A value near 0 indicates a low quality image (with high compression rate),
 a value of 100 indicates a high quality image (with low compression rate).
 In general, a compression rate of 10 - 20 can be expected, depending on
 the input image.

 A file is created and all JPEG data will be stored in this file.
 The path of the file is specified by the string path.

 If a filesize of maxlng is reached and the JPEG generation process did not
 finish, the file is deleted afterwards, since it containes no useful information. In

this case the function will return -1, otherwise 0. The function also returns –1 if
the specified file could not be opened.

 maxlng must be 22 at minimum, this is the size of the file-header and -trailer.
 It is recommended to use much larger values for maxlng, e.g. several

kilobytes.

example The following example compresses the image given by image variable a and

stores the data in a JPEG file with name „jpeg“.

 #include <vclib.h>

#include <flib.h>

 main()
 {
 image a={sta, 256, 256, 768};
 int err;

 err=fwrite_jpeg(&a,"jpeg",80,0x10000);

 if(err!=0) pstr("memory overrun\n");

 ...

memory 768 bytes of heap memory

see also fread_jpeg()

Software documentation - Image processing library for VC cameras Page 39 15/12/04

Vision Components, Ettlingen

cjpeg encode image variable to JPEG image file

synopsis U8 *cjpeg(image *a, I32 quality, U8 *addr,
 U32 maxlng, I32 (*func)())

description The function cjpeg() compresses image variable a to JPEG format
 according to the JPEG standard.
 quality is a value between 0 and 100 indicating the resulting image quality.
 A value near 0 indicates a low quality image (with high compression rate),
 a value of 100 indicates a high quality image (with low compression rate).
 In general, a compression rate of 10 - 20 can be expected, depending on
 the input image.

 The JPEG data output is passed to the I/O function func()which specifies
 the destination of the data and how these data are stored or transmitted.
 A pointer to this function must be passed to cjpeg().

 For the available I/O functions there are macros (#define instructions), which

make it easier to call the function.

 The following macros are available:

 Call I/O function

 cjpeg_d(img, qual, addr, maxlng) wr_dram()
 cjpeg_f(img, qual, addr, maxlng) wr_flash()
 cjpeg_a(img, qual) wr_ascii()
 cjpeg_b(img, qual) wr_binary()

 Of course, you can write your own I/O functions. Pass their address (function

pointer) to cjpeg().

 cjpeg_d() writes JPEG data to memory starting at address addr.

 cjpeg_f() writes JPEG data to Flash Eprom starting at address addr.
 Since this is a raw write (no file information is provided) care must be taken to

use this function. If you want to write a flash Eprom file with JPEG data, use
function fwrite_jpeg()instead.

 cjpeg_a()sends JPEG data to the serial RS232 interface as ASCII Hex

characters. The data flow can be controlled by XON/XOFF handshaking by
the receiving computer system.

 cjpeg_b() sends JPEG data to the serial RS232 interface as binary (8 bits)
 data. The data flow can be controlled by XON/XOFF handshaking by the

receiving computer system.

 For all macros the variable img is the image variable a of the cjpeg()

function call, qual is the corresponding quality factor.
 addr and maxlng are start address and maximum length, the functions

transferring data via the serial link do not need such variables.

 cjpeg_d() and cjpeg_f(): If a data size of maxlng is reached and the

JPEG generation process did not finish, the function will return 0L, otherwise it
returns the next available address behind the JPEG data.

Software documentation - Image processing library for VC cameras Page 40 15/12/04

Vision Components, Ettlingen

 cjpeg_a() and cjpeg_b(): the function will return 1L if sucessfully finished.

It may return 0L on occurence of some error in the I/O functions.
 This is, however, not used with the I/O functions supplied.

example 1 The following example compresses the image given by image variable a and

stores the data in memory.

 #include <vclib.h>

#include <flib.h>

 main()
 {
 image a={sta, 256, 256, 768};
 U8 *next;

 next=cjpeg_d(&a, 80, addr, 0x10000);

 if(next==NULL) pstr("memory overrun\n");

 ...

example 2 The following example compresses the image given by image variable a and

transmits it via RS232 as ASCII hex data.

 #include <vclib.h>

#include <flib.h>

 main()
 {
 image a={sta, 256, 256, 768};

 cjpeg_a(&a, 80);

 ...

example 3 This following I/O function writes data bytes from memory and updates the
 emit-control struct . It can be used as an example to create your own I/O
 functions.

 typedef struct
 {
 int put_bits; /* number of bits already sent */
 long cde; /* actual bit code */
 U8 *ptr; /* pointer to memory */
 U8 *last; /* last available memory address */
 int err; /* error flag */
 int (*fc)(); /* write byte function pointer */
 } emit_ctrl;

Software documentation - Image processing library for VC cameras Page 41 15/12/04

Vision Components, Ettlingen

 void dr_dram(emit_ctrl *emc, int val)
 {
 U8 *addr=emc->ptr;

 if(addr-emc->last <= 0)
 {
 *addr++ = val;
 emc->ptr=addr;
 }
 else
 {
 emc->err=-1;
 }
 }

memory 768 bytes of heap memory

see also djpeg()

fread_jpeg read JPEG image file / flash EPROM into image variable

synopsis I32 fread_jpeg(image *a, char *path)

description The function fread_jpeg() decompresses a JPEG file and displays the

result in image variable a.

 A file with a path given by path is searched, the data is decompressed and

the image is written into image variable a.

 The function returns -1 if the file could not be opened, it returns -2 if the image

could not be displayed. That may be the case, if the JPEG image size is larger
than the image variable size. Under normal conditions, the function will return
0.

example The following example searches a file with name „jpeg“, decompresses the

image and stores the result in image variable a.

 #include <vclib.h>

#include <flib.h>

 image a = {sta, 740, 574, 768};
 int err;

 err=fread_jpeg(&a,"jpeg");

 if(err != 0) pstr("jpeg error\n");

 ...

memory 768 bytes of heap memory

see also fwrite_jpeg()

Software documentation - Image processing library for VC cameras Page 42 15/12/04

Vision Components, Ettlingen

djpeg decode JPEG image file into image variable

synopsis U8 *djpeg(image *a, U8 *addr, I32 (*func)())

description The function djpeg() decompresses a JPEG file and displays the result in

image variable a.

 The JPEG data input is provided by the I/O function func()which specifies
 the source of the data and how these data are read or transmitted.
 A pointer to this function must be passed to djpeg().

 For the available I/O functions there are macros (#define instructions), which

make it easier to call the function.

 The following macros are available:

 Call I/O function

 djpeg_d(img, addr) rd_dram()
 djpeg_f(img, addr) rd_flash()
 djpeg_a(img) rd_ascii()
 djpeg_b(img) rd_binary()

 Of course, you can write your own I/O functions. Pass their address (function

pointer) to cjpeg().

 djpeg_d (): The JPEG data are read from memory starting at address

addr, the resulting image is stored in image variable a.
 The function returns the next memory address behind the JPEG code. If a

format error occurs it will return 0L. That may be the case, if the JPEG image
size is larger than the image variable size.

 djpeg_f (): The JPEG data are read from flash eprom starting at address

addr, the resulting image is stored in image variable a.
 Since this is a raw read (no file information is used) care must be taken to use

this function. If you want to read a flash Eprom file with JPEG data, use
function fread_jpeg()instead.

 The function returns the next flash eprom address behind the JPEG code. If a
format error occurs it will return 0L. That may be the case, if the JPEG image
size is larger than the image variable size.

 djpeg_a (): The JPEG data are read from the RS232 serial interface in

ASCII hex format, the resulting image is stored in image variable a.
 If a format error occurs it will return 0L. That may be the case, if the JPEG

image size is larger than the image variable size. If the function exectutes
correctly, it will return 1L.

 The function uses XON/XOFF handshaking to control the data flow.

 djpeg_b (): The JPEG data are read from the RS232 serial interface in

binary format (8 bits), the resulting image is stored in image variable a.
 If a format error occurs it will return 0L. That may be the case, if the JPEG

image size is larger than the image variable size. If the function exectutes
correctly, it will return 1L.

 The function uses XON/XOFF handshaking to control the data flow.

Software documentation - Image processing library for VC cameras Page 43 15/12/04

Vision Components, Ettlingen

example 1 The following example decodes the JPEG data in memory starting at address

addr and displays the image in image variable a.

 #include <vclib.h>

#include <flib.h>

 main()
 {
 image a = {sta, 256, 256, 768};
 U8 *addr, *next;

 next=djpeg_d(&a, addr);

 if(next==NULL) pstr("jpeg error\n");

 ...

example 2 This following I/O function reads data bytes from memory and updates the
 fct-control struct . It can be used as an example to create your own I/O
 functions.

 typedef struct
 {
 U8 *ptr; /* memory address */
 int bits_left; /* # of unused bits in it */
 long buffer; /* bit buffer */
 int (*fc)(); /* read byte function pointer */
 } fill_ctrl;

 int rd_dram(fill_ctrl *fct)
 {
 return(rpix((fct->ptr)++));
 }

memory 768 bytes of heap memory

see also cjpeg()

Software documentation - Image processing library for VC cameras Page 44 15/12/04

Vision Components, Ettlingen

Programs for processing binary images in (unlabelled) run length code

rlcmalloc allocate RLC memory
rlcfree free RLC memory
rlcmk create run length code for an image variable
rlcout output run length code
rlc_inv in-place inversion of RLC
rlc2 logical link of two images in run length code
erxdi erosion / dilation of run length code / square typ
erxdi2 erosion / dilation of run length code / diagonal typ
testrlc create RLC test image (chess-board)
rlc_mf horizontal „median filter“ for RLC
fwrite_rlc write RLC to flash EPROM
fread_rlc read RLC from flash EPROM
rlc_move move RLC
rlc_area calculate area in run length code
rlc_feature determine features in unlabelled RLC
sgmt segment run length code (object labeling)

rlcmalloc allocate memory for RLC (macro)

synopsis U16 *rlcmalloc(U32 size)

description rlcmalloc returns a pointer to a heap memory area for size RLC items
(U16)

rlcfree free RLC memory (macro)

synopsis void rlcfree(U16 *rlc)

description rlcfree() releases RLC memory previously allocated with rlcmalloc().

Software documentation - Image processing library for VC cameras Page 45 15/12/04

Vision Components, Ettlingen

rlcmk create run length code for an image variable

synopsis U16 *rlcmk(image *a, I32 thr, U16 *rlc, I32 size)

description The function rlcmk() creates run length code for the image variable
 a and stores it in memory. thr is the threshold value used for binarization
 0 <= thr < 256. A pixel with a gray scale g >= thr is interpreted as white,
 otherwise as black.
 rlc is the starting address at which the RLC is stored in memory, size is the

number of words in memory available for the RLC. If there is not enough
space here, creation of the RLC is aborted and the function returns NULL.

 Four data words (U16) are placed before the RLC itself, which are required for

image reconstruction and for labelled RLC.
 The address of the segment label code comes first. rlcmk()enters (void *)0

here, to show that the RLC is not yet labelled.
 The horizontal (a->dx) and vertical (a->dy) image size follows, in order to later

reconstruct the image format.

 Address Value

 rlc 0 SLC address (0, if unlabelled)
 rlc+1 0 SLC address (0, if unlabelled)
 rlc+2 dx
 rlc+3 dy
 rlc+4 first change in the first line
 ...
 rlc+n dx / end of the first line
 rlc+n+1 first change in the second line
 ...

 This function returns a pointer (U16 *) to the next memory address which is

not yet written with RLC. The pointer is aligned to the next integer address. In
case of error, it returns NULL.

see also rlcout()

memory none

parse_rlc parse RLC and return next available address

synopsis U16 *parse_rlc(U16 *rlc)

description parse_rlc parses the RLC specified by pointer rlc and returns the next

available memory address (integer aligned) right behind the RLC.

memory none

Software documentation - Image processing library for VC cameras Page 46 15/12/04

Vision Components, Ettlingen

rlcout output run length code

synopsis I32 rlcout(image *a, U16 *rlc, U32 dark, U32 bright)

description The function rlcout() makes it possible to convert run length code to a gray

image.
 This is mostly used to display the run length code on the screen.
 However, this function can also be used to perform image processing

operations which are not possible directly in the run length code, or which
would be difficult in it.

 The image variable a provides the start address and the pitch for the output.
 The function immediately aborts with error code -1 if the image format (dx, dy)

implicitly contained in the run length code does not agree with a->dx and a-
>dy of the image variable.

 rlc is the start address of the run length code in memory, dark is the gray

scale for the black areas of the RLC, bright is the gray scale for the white
areas - here, values between 0 and 255 are possible.

 return values:

 0: no error
 -1 format error

see also rlcmk()

memory none

rlc_inv in-place inversion of RLC

synopsis U16 *rlc_inv(U16 *rlc)

description The function rlc_inv() performes the in-place inversion of RLC stored at
 address rlc in memory.
 Inversion means, that black segments are changed to white and vice versa.
 The inversion is obtained by negating the color information at the start of each
 line.
 rlc_inv() returns the address of the next item to follow the RLC code

(integer aligned).

memory none

Software documentation - Image processing library for VC cameras Page 47 15/12/04

Vision Components, Ettlingen

rlc2 logical link of two images in run length code

synopsis U16 *rlc2(U16 *rlca, U16 *rlcb, U16 *dest,
 U16 * (*func)())

description The function rlc2()makes it possible to calculate any links between two run

length codes.
 rlca and rlcb pass the memory address of both RLCs. The memory

address of the resulting RLC is passed with dest.
 dest must be different from rlca and rlcb.
 The RLCs to be linked must have the identical format (dx, dy). If this is not the

case, then the function returns NULL.
 Otherwise, the function rlc2 returns the next not yet written memory

address for the resulting RLC dest (integer aligned).
 For execution, it does not matter if the RLC is labelled or unlabelled. In both

cases, the result is an unlabelled RLC.
 A pointer to the basic function to be executed specifies the nature of the link.

 The following macros are available:

 Call Basic function Operation

 rlcand(a, b, dest) rlc_andf() AND
 rlcor(a, b, dest) rlc_orf() OR
 rlcxor(a, b, dest) rlc_xorf() XOR

 Of course, you can write your own basic functions. Pass their address

(function pointer) to rlc2().

memory none

Software documentation - Image processing library for VC cameras Page 48 15/12/04

Vision Components, Ettlingen

erxdi erosion / dilation of run length code / square typ

synopsis U16 * erxdi(U16 *src, U16 *dest, U16 *(*fc1)(),
 U16 *(*fc2)())

description The function erxdi() erodes/dilates the image by one pixel. Erosion means

that all white areas in the RLC become one pixel wider in each direction, while
all black areas are narrowed one pixel.

 Thus, black areas which are 1 or 2 pixels in diameter disappear completely.

 src is a pointer to the source RLC, dest to the destination RLC.

 The function pointers passed specify the type of operation being performed.
 fc1 is the function pointer for the horizontal erosion/dilation, fc2 is the
 function pointer for the vertical erosion/dilation.

 The following macros are available:

 Call horizontal function vertical function

 erode(a, b) rlc_xero rlc_orf
 dilate(a, b) rlc_xdil rlc_andf

 Of course, you can write your own horizontal and vertical functions. Pass their

address (function pointer) to erxdi().

memory 8*(dx+1) bytes of heap memory

see also erxdi2(), rlc_mf(), mx(), mn()

Software documentation - Image processing library for VC cameras Page 49 15/12/04

Vision Components, Ettlingen

erxdi2 erosion / dilation of run length code / diagonal typ

synopsis U16 * erxdi2(U16 *src, U16 *dest, U16 *(*fc1)(),
 U16 *(*fc2)())

description The function erxdi2() erodes/dilates the image by one pixel. It is most

similar to the erxdi2() function, but instead of a square as structuring
element, it uses a diagonal (diamond-shaped) structuring element.

 The influence of the structuring element becomes apparent, if the function is
called several times on the data of the previos erosion / dilation.

sqare type diagonal type

 A round shaped structuring element can be approximated by alternating the

calls of erxdi() and erxdi2(), this procedure will produce an octagonal
shaped structuring element which is much closer to a circle.

 src is the source RLC, dest is the destination RLC.

 The function pointers passed specify the type of operation being performed.
 fc1 is the function pointer for the horizontal erosion/dilation, fc2 is the
 function pointer for the vertical erosion/dilation.

 The following macros are available:

 Call horizontal function vertical function

 erode2(a, b) rlc_xero rlc_orf
 dilate2(a, b) rlc_xdil rlc_andf

 Of course, you can write your own horizontal and vertical functions. Pass their

address (function pointer) to erxdi().

memory 4*(dx+1) bytes of heap memory

see also erxdi(), rlc_mf(), mx(), mn()

Software documentation - Image processing library for VC cameras Page 50 15/12/04

Vision Components, Ettlingen

testrlc create RLC test image (chess-board)

synopsis U16 *testrlc(U16 *rlc, I32 dx, I32 dy, I32 size)

description The function testrlc() creates a testimage in RLC format.
 rlc is the start address of the RLC, where the testimage is written to.
 dx and dy is the horizontal and vertical size of the image.
 size is the size of the individual chess-board squares.
 dy must be a multiple of size, it will be rounded off otherwise

 The function returns a pointer to the next available memory word (U16) to

follow the RLC code (integer aligned).

 The function can be used to test functionality and execution timing of RLC

functions including object labelling.

 A test image of size 640 x 480 with a chess-board square size of 32 pixels
 needs 10084 words (U16) of RLC, which is a good approximation of the

average information amount of a „real life“ image of that format.

memory 4*(dx+1) bytes of heap memory

example
 U16 *r0;

r0=(U16 *)rlcmalloc(12000);
 testrlc(r0,640,480,32);
 rlcout(&a, r0, 0, 255);

rlc_mf horizontal „median filter“ for RLC

synopsis U16 *rlc_mf(U16 *src, U16 *dest, I32 col, I32 lng)

description rlc_mf() performs the horizontal median filter for RLC.
 The median filter purges all structures of color col with length less than lng.

 The operation will create less data at address dest than the original RLC at

address src. Moreover, the operation may be performed in-place, i.e. src
and dest be be the same.

 The function is valuable to reduce the amount of useless information in noisy

images in an early stage of RLC processing.

 The function returns a pointer to the next available memory word (U16) to

follow the RLC code (integer aligned).

memory none

see also erxdi(), erxdi2(), mx(), mn()

Software documentation - Image processing library for VC cameras Page 51 15/12/04

Vision Components, Ettlingen

fwrite_rlc write RLC to flash EPROM

synopsis I32 fwrite_rlc(char *path, U16 *rlc)

description fwrite_rlc() creates a flash EPROM file and writes the RLC starting at

address rlc to this file.

 The full path of the file is specified by the string path .

 If the function is unable to open the specified file, it returns –1, otherwise 0.

memory none

see also fread_rlc()

fread_rlc read RLC from flash EPROM

synopsis U16 * fread_rlc(char *path, U16 *rlc)

description fread_rlc() opens a flash EPROM file and writes the RLC of this file to

meory at address rlc.

 The full path of the file is specified by the string path .

 The function returns a pointer to the next available memory word to follow
 the RLC code (integer aligned).

memory none

see also fwrite_rlc()

rlc_move move RLC

synopsis U16 *rlc_move(U16 *src, U16 *dest, I32 mx, I32 my)

description rlc_move() reads RLC line at memory address src, moves all RLC items

horizontally by mx pixels (mx negative: move left), vertically by my lines (my
negative: move up) and outputs the result to dest.

 src and dest must be different for this operation.

 Black space (color=0) is added for the regions outside the original window.

memory none

Software documentation - Image processing library for VC cameras Page 52 15/12/04

Vision Components, Ettlingen

rlc_area calculate area in run length code

synopsis U32 rlc_area(U16 *rlc, I32 color)

description The function rlc_area() calculates the area of all pixels of a given color

(black: color = 0, white: color = -1) in the unlabelled RLC.
 All pixels of a given color (black or white) are included. There is no

differentiation according to objects.

 rlc is the start address of the run length code in memory.
 The return value of this function is the area.

see also rlc_feature(), rl_area2()

memory none

Software documentation - Image processing library for VC cameras Page 53 15/12/04

Vision Components, Ettlingen

rlc_feature determine feature in unlabelled RLC

synopsis void rlc_feature(feature *f, U16 *rlc, I32 color)

description The function rlc_feature() calculates features in the unlabelled RLC.

The parameter color can be used to specify if the features for all black (color
= 0) or all white (color = -1) pixels of the RLC should be calculated.

 All pixels of a given color (black or white) are included. There is no
differentiation according to objects.

 The following features are calculated:

 area: area
 x_center: x-coordinate of the center of gravity
 y_center: y-coordinate of the center of gravity
 x_min: smallest x coordinate
 x_max: largest x coordinate
 y_min: smallest y coordinate
 y_max: largest y coordinate
 x_lst: last x-coordinate in the last line

 The maximum and minimum values of x and y define the bounding box

around the pixels chosen with color.
 The point with coordinates (x_lst,y_max) is a point which can serve as the

initial point of the object’s contour, if the chosen pixels are contiguous.

 rlc is the start address of the run length code in memory.

 f is a pointer to the feature list stored in the following struct.

 typedef struct
 {
 U32 area; /* object area */
 U32 x_center; /* x_center - normalized */
 U32 y_center; /* y_center - normalized */
 I32 x_min; /* x_min */
 I32 x_max; /* x_max */
 I32 y_min; /* y_min */
 I32 y_max; /* y_max */
 I32 x_lst; /* last x */
 } feature;

 A pointer to a struct of this type is passed to the function. The pointer need

not be initialized before you call this function.
 The struct is provided with the correct features after the function is called.

see also rlc_area(), rl_ftr2()

memory none

Software documentation - Image processing library for VC cameras Page 54 15/12/04

Vision Components, Ettlingen

sgmt segment run length code (object labelling)

synopsis U16 *sgmt(U16 *rlc, U16 *slc)

description The function sgmt() segments the run length code stored starting at the

memory address rlc.
 A pointer to the object number information slc, which the function will output,

is also passed to the function - enough memory must be available for the
memory needs of the RLC.

 The slc pointer is stored in the run length code at address rlc and rlc+1. This
indicates a labelled RLC.

 The number of objects found and the object numbers for the individual RLC
segments are stored in the SLC.

 The object numbers begin at 0; a total of 32000 object numbers are allowed.
An “object number overrun“ occurs if this number is exceeded.

The return value of this function is the next free memory address (integer
aligned). It returns NULL in case of object number overrun.

memory 256000 bytes of heap memory (= 8 * 32000)

Software documentation - Image processing library for VC cameras Page 55 15/12/04

Vision Components, Ettlingen

Programs for processing binary images in labelled run length code

dispobj output labelled run length code
rlc_cut cut individual objects out of the labelled RLC
rl_area2 calculate object area in the labelled RLC
rl_ftr2 calculate object features in the labelled RLC
chkrlc check RLC

dispobj output labelled run length code

synopsis int dispobj(image *a, U16 *rlc)

description The function dispobj() serves to output the labelled RLC for test purposes.
 The various objects contained in the labelled RLC are displayed with different

gray scales.
 Otherwise, the output is basically equivalent to the function rlcout().

memory none

rlc_cut cut individual objects out of the labelled RLC

synopsis U16 *rlc_cut(U16 *src, U16 *dest, I32 objnum)

description The function rlc_cut() copies individual connected pixel areas (objects) out

of the labelled RLC.
 src is the labelled source RLC, dest is the unlabelled
 target RLC. objnum is the number of the object to be copied.
 All objects copied out (including black ones) are stored white on a black

background in the target RLC.
 The return value of this function is the address of the next available memory

space immediately after the target RLC.
 The function is aborted and NULL is returned if src is unlabelled or if objnum

is larger than the number of objects contained in the RLC.

memory no heap space required

Software documentation - Image processing library for VC cameras Page 56 15/12/04

Vision Components, Ettlingen

rl_area2 calculate object area in the labelled RLC

synopsis I32 rl_area2(U16 *rlc, U32 *area, U32 n)

description The function rl_area2() calculates the area of all objects in the labelled

RLC.

 rlc is the start address of the labelled RLC in memory.
 area is an array for the object areas, and n is the maximum number of

objects, i.e. usually the dimension of the array.

 After the function rl_area2() is called, the object areas for all objects

(independent of their colors) are available in the array area.

 The function returns the number of objects in the labelled RLC.

see also rlc_area()

memory none

example U16 *next, *rlc;

 U32 area[2048];
 I32 nobj;

 next = rlcmk(&a, 128, rlc, 0x40000);
 next = sgmt(rlc, next);
 nobj = rl_area2(rlc, area, 2048);

rl_ftr2 calculate object features in the labelled RLC

synopsis I32 rl_ftr2(U16 *rlc, ftr *f, U32 n)

description The function rl_ftr2() calculates object features of all objects in the

labelled RLC.

 The following features are calculated:

 area: object area
 x_center: x-coordinate of the center of gravity
 y_center: y-coordinate of the center of gravity
 x_min: smallest x-coordinate
 x_max: largest x-coordinate
 y_min: smallest y-coordinate
 y_max: largest y-coordinate
 x_lst: last x-coordinate in the last line
 color: object color (0 = black, -1 = white)

 The maximum and minimum values of x and y define the bounding box

around the chosen object.
 The coordinates (x_lst,y_max) specify a point which can serve as the initial

value for contour following. The object pixels are guaranteed to be contiguous.

Software documentation - Image processing library for VC cameras Page 57 15/12/04

Vision Components, Ettlingen

 rlc is the start address of the labelled run length code in memory.

 f is a pointer to the feature list (here: a struct array), n is the maximum

number of objects, i.e. usually the dimension of the struct array.

 The struct used has the following structure:

 typedef struct
 {
 U32 area; /* object area */
 U32 x_center; /* x_center - normalized */
 U32 y_center; /* y_center - normalized */
 I32 x_min; /* x_min */
 I32 x_max; /* x_max */
 I32 y_min; /* y_min */
 I32 y_max; /* y_max */
 I32 x_lst; /* last x */
 I32 color; /* object color 0 = black */
 } ftr;

 A pointer to the struct array is passed to this function. The pointer need not be

initialized before you call this function.
 The struct array is provided with the correct features of all objects after the

function is called.

 The return value of the function is the number of objects in the labelled RLC.

see also rl_area2(), rlc_feature()

memory no heap space required

example
 U16 *rlc, *next;
 ftr f[100];

 next = rlcmk(&a, 128, rlc, 0x40000);
 next=sgmt(rlc,next);
 nobj=rl_ftr2(rlc, f, 100);

Software documentation - Image processing library for VC cameras Page 58 15/12/04

Vision Components, Ettlingen

chkrlc check RLC

synopsis int chkrlc(U16 *rlc)

description Problems usually occur with functions which use run length code if the RLC

contains errors. For example, even the function rlcout(), which outputs the
RLC on the screen, may crash if called with faulty RLC.

 The functions in the library have been checked for correctness, so problems
are not to be expected. If the user, however, develops an own function for
RLC processing, it is recommended to check the RLC during the development
process. The function chkrlc() may be used for this purpose.

 The function should not be used for the final program, since

 - it was not optimized for speed
 - it outputs debug information via the serial communication link

 In particular, this function checks the following:

 - labelled or unlabelled RLC
 for labelled RLC the SLC address and the number of objects are
 printed
 - dx and dy are printed
 - negative RLC values
 - nonincreasing, i.e., constant or decreasing RLC values per line
 - RLC values greater than dx

 For labelled RLC, the following is also checked:

 - two identical sequential SLC values
 - SLC values greater than the maximum number of objects

 In case of error, the function returns -1, otherwise 0. Debug information is

printed during execution.

Software documentation - Image processing library for VC cameras Page 59 15/12/04

Vision Components, Ettlingen

Programs for processing contour code(CC)

contour8 Contour following / 8-connected
cdisp display contour
ccxy convert contour code into xy-array

contour8 Contour following / 8-connected

synopsis I32 contour8(image *a, I32 x0, I32 y0, I32 dir, I32 thr,

U32 lng, U32 **dst)

description This function generates the contour code (CC) of an object or an edge starting
 at (x0,y0) in image variable a.
 dir has two meanings: The value of dir indicates the direction in which the
 contour has been found (according to the contour code values from 0=up to

7=upper left). In other words: in the reverse direction must be at least one
white pixel.

 The second meaning of dir is the direction of movement for the contour-
 following algorithm.

 dir > 0 positive direction (counter-clockwise)
 dir < 0 negative direction (clockwise)

 negative values of dir are the logical NOT of the corresponding positive
 value (0..7).

 thr is the threshold for the underlying binarisation. If (pix < thr) the pixel
 pix is assumed to be black.

lng is the maximum code length allowed (number of bytes in memory for
contour). Since additional information is stored, there must be at least
(16 + lng) bytes of memory available.

 **dst is a handle for the destination address in memory. It will be updated to
 the next available address when the function finishes.

 The function will only take black pixels as contour pixels. For this reason the
 starting pixel (x0,y0) must be black. It must also be a contour pixel which
 means, that it must have at least one white neighbor. If all neighbors are
white,
 it is a so called isolated pixel - no contour code will be generated.

Although the pointer to the destination is a U32 *, the contour code itself is
stored as byte values.

return values: the function will return the following values:

 -1 : invalid starting pixel (not black) - no contour code generated
 0 : isolated pixel or pixel inside object - no contour code generated
 1 : closed contour (end pixel = starting pixel / same direction)
 2 : contour stops at left corner of image variable
 4 : contour stops at right corner of image variable
 8 : contour stops at upper corner of image variable
 16 : contour stops at lower corner of image variable
 32 : space exhausted (CC lenght > lng)

Software documentation - Image processing library for VC cameras Page 60 15/12/04

Vision Components, Ettlingen

 Some of the conditions could be true at the same time. (example:
 contour stops at the left upper corner of the image variable) In this case
 the individual codes will be added (example: 2+8 = 10)

memory: no heap space required

see also cdisp()

cdisp display contour

synopsis void cdisp(image *a, U32 *src, I32 col, void (*func)())

description This function displays the contour code data (CC) of an object or an edge
 starting at address src in image variable a.
 The contour will be displayed with color col.

 The nature of drawing is specified by passing the pointer (*func)() to

cdisp().

 The following macros are available:

 Call Drawing function Remark

 cdisp_d(a, src, col) wpix() DRAM write
 cdisp_x(a, src, col) xorpix() DRAM XOR
 cdisp_o(a, src, col) wovl() Overlay write
 cdisp_z(a, src, col) xorovl() Overlay XOR

memory no heap space required

see also contour8()

ccxy convert contour code (CC) into xy array

synopsis I32 ccxy(I32 *src, I32 *xy, I32 *tbl, U32 maxcount)

description This function converts contour code data (CC) of an object or an edge
 into a list of x/y-values stored beginning at address xy.

src is the source contour code (CC), xy the x/y coordinate list where the
function places its output and maxcount is the maximum number of
coordinates to be written to xy .

The function returns the number of contour pixels or –1 on overflow for xy.

tbl is a pointer to the following table:

 int tbl[16] = { 0, 1, 1, 1, 0,-1,-1,-1,

 -1,-1, 0, 1, 1, 1, 0,-1};

Software documentation - Image processing library for VC cameras Page 61 15/12/04

Vision Components, Ettlingen

Graphics functions

chprint Output a string to an image variable
linexy basic line creation routine
line draw line
frame draw frame
dframe draw double-width frame
marker draw marker
dmarker draw double-width marker
EllipseXY basic ellipse creation program (quarter)
ellipse draw ellipse

Software documentation - Image processing library for VC cameras Page 62 15/12/04

Vision Components, Ettlingen

chprint Output a string to an image variable

synopsis void chprint(char *s, image *a, I32 cx, I32 cy)

description chprint() outputs the string passed by s to the image variable a.
 An 8 x 8 matrix is used for the character set.
 cx and cy are the width and height of the characters in multiples of 8 pixels.

 The characters are displayed in white (gray scale 255) on a black background

(gray scale 0).

 If the passed string cannot be displayed in the specified image variable, then it

will be truncated to the displayable length.

 No such check is made in the vertical direction.

 This function is mostly used for displaying information on the screen.

see also chprint_ov()

memory no heap memory required

Software documentation - Image processing library for VC cameras Page 63 15/12/04

Vision Components, Ettlingen

linexy basic line creation routine

synopsis I32 linexy(I32 dx, I32 dy, I32 *xy)

description The function linexy() creates a list of coordinates which creates the (x,y)

coordinates for all pixels on a line.
 The line begins at the origin (0,0) and ends at the point (dx,dy).
 This routine creates a list of (x,y) coordinates which are stored starting at the

memory address specified by the pointer xy. The list contains first each x-
coordinate and then the y-coordinate, respectively.

 This kind of access is faster than other kinds. However, the storage type is
selected such that you can also select other access types.

 The function returns the number of generated line points minus 1.

 1. Access as a two-dimensional array

 I32 xyarr[1024][2];
 I32 dx = 100;
 I32 dy = 100;
 I32 count, x, y;

 count = linexy(dx, dy, xyarr) + 1;

 x = xyarr[0][0]; /* x-coordinate of 1st pixel */
 y = xyarr[0][1]; /* y-coordinate of 1st pixel */

 2. Access as a struct array

 typedef struct
 {
 int x;
 int y;
 } vcpt;

 ...

 vcpt *xy;
 I32 dx = 100;
 I32 dy = 100;
 I32 count, x, y;

 xy = (vcpt *)vcmalloc(1024);

 count = linexy(dx, dy, (I32 *)xy) + 1;

 x = xy->x; /* x-coordinate of 1st pixel */
 y = xy->y; /* y-coordinate of 1st pixel */

 xy++; /* address next coordinate */

 The return value of the function is the number of coordinates created.

see also line()

Software documentation - Image processing library for VC cameras Page 64 15/12/04

Vision Components, Ettlingen

line draw line

synopsis void line(image *a, I32 x1, I32 y1,
 I32 x2, I32 y2, I32 col, void (*func)())

description The function line() draws a line in video memory, or more precisely in the

image variable a.
 The line begins at coordinate (x1,y1) and ends at coordinate (x2,y2),

whereby both coordinates relate to the origin (upper left corner) of image
variable a.

 The line can be drawn normally, or as XOR in the gray image or in the
overlay.

 Caution: No check is made if the line to be drawn partially or entirely

leaves the memory area of the image variable(s).

 Therefore, you should make sure the following is true:

 0 < x1 < a->dx or 0 < x2 < a->dx
 0 < y1 < a->dy or 0 < y2 < a->dy

 If the image variable a is part of a larger image variable, then of course going

beyond the bounds of the memory area does not cause a problem.

 col is the gray scale to be drawn.

 The nature of drawing is specified by passing the pointer (*func)() to the

drawing function itself.

 The following macros are available:

 Call Drawing function

 lined(a, x1, y1, x2, y2, col) wp_set32()
 linex(a, x1, y1, x2, y2, col) wp_xor32()
 lineo(a, x1, y1, x2, y2) wp_set32()
 linez(a, x1, y1, x2, y2) wp_xor32()

memory 8*(max{abs(x2-x1),abs(y2-y1)}+1) bytes of heap memory

see also linexy()

Software documentation - Image processing library for VC cameras Page 65 15/12/04

Vision Components, Ettlingen

frame draw frame

synopsis void frame(image *a, I32 col, void (*func)())

description The function frame() draws a frame in video memory, or more precisely in

the image variable a.
 The frame is drawn precisely on the margin of the image variable, i.e., in the

first and last lines, and in the first and last columns of the image variables.

 The frame can be drawn normally, or as XOR in the gray image or in the

overlay.

 The nature of drawing is specified by passing the pointer (*func)() to the

drawing function itself.

 The following macros are available:

 Call Drawing function

 framed(a, col) wp_set32()
 framex(a, col) wp_xor32()
 frameo(a) wo_set32()
 framez(a) wo_xor32()

memory 8*(max{a->dx,a->dy}+1)bytes of heap memory

see also dframe()

dframe draw double-width frame

synopsis void dframe(image *a, I32 col, void (*func)())

description The function dframe() draws a frame in video memory, or more precisely in

the image variable a. The frame is drawn with a width of 2 pixels. With
cameras based on the CCIR or EIA standard, this eliminates most of the half-
image flicker.

 The frame is drawn precisely on the margin of the image variable, i.e., in the
lines 0, 1, dx-1 and dx-2, as well as in columns 0,1,dy-1 and dy-2.

 The frame can be drawn normally, or as XOR in the gray image or in the

overlay.

 The nature of drawing is specified by passing the pointer (*func)() to the

drawing function itself.

 The following macros are available:

 Call Drawing function

 dframed(a, col) wp_set32()
 dframex(a, col) wp_xor32()
 dframeo(a) wo_set32()
 dframez(a) wo_xor32()

memory 8*(max{a->dx,a->dy}+1)bytes of heap memory

see also frame()

Software documentation - Image processing library for VC cameras Page 66 15/12/04

Vision Components, Ettlingen

marker draw marker

synopsis void marker(image *a, I32 col, void (*func)())

description The function marker() draws a marker in video memory, or more precisely in

the image variable a.
 The marker is drawn centered at the image variable.

 The marker can be drawn normally, or as XOR in the gray image or in the

overlay.

 The nature of drawing is specified by passing the pointer (*func)() to the

drawing function itself.

 The following macros are available:

 Call Drawing function

 markerd(a, col) wp_set32()
 markerx(a, col) wp_xor32()
 markero(a, col) wo_set32()
 markerz(a, col) wo_xor32()

memory 8*(max{a->dx,a->dy}+1) bytes of heap memory

see also dmarker()

Software documentation - Image processing library for VC cameras Page 67 15/12/04

Vision Components, Ettlingen

dmarker draw double-width marker

synopsis void dmarker(image *a, I32 col, void (*func)())

description The function dmarker() draws a marker in video memory, or more precisely

in the image variable a.
 The marker is drawn with a width of 2 pixels. With cameras based on the

CCIR or EIA standard, this eliminates most of the half-image flicker.
 The marker is drawn centered at the image variable.

 The marker can be drawn normally, or as XOR in the gray image or in the

overlay.

 The nature of drawing is specified by passing the pointer (*func)() to the

drawing function itself.

 For the available basic functions there are macros (#define instructions),

which make it easier to call the function.

 The following macros are available:

 Call Drawing function

 dmarkerd(a, col) wp_set32()
 dmarkerx(a, col) wp_xor32()
 dmarkero(a, col) wo_set32()
 dmarkerz(a, col) wo_xor32()

memory 8*(max{a->dx,a->dy}+1)bytes of heap memory

see also marker()

EllipseXY basic ellipse creation program (quarter)

synopsis int EllipseXY(I32 a, I32 b, I32 *xyc)

description The function EllipseXY()creates a list of coordinates which creates the

(x,y) coordinates for a quarter of an ellipse.
 a and b are the two half axes of the ellipse, the ellipse is centered at the
 origin (0,0). The function only outputs positive values for x and y.
 This routine creates a list of (x,y) coordinates which are stored starting at the

memory address specified by the pointer xyc. The list contains first each x-
coordinate and then the y-coordinate, respectively. The list should have a size
of max(a,b) to assure proper operation.

 The return value of the function is the number of coordinates created.

 See documentation of linexy() function for examples.

see also ellipse(), linexy()

Software documentation - Image processing library for VC cameras Page 68 15/12/04

Vision Components, Ettlingen

ellipse draw ellipse

synopsis void ellipse(image *a, I32 col, void (*func)())

description The function ellipse() draws an ellipse in video memory, or more precisely

in the image variable a.
 The ellipse fills the image variables, i.e. the ellipse is centered and the

horizontal and vertical diameter are equal to the horizontal and vertical size of
the image variable.

 The ellipse can be drawn normally, or as XOR in the gray image or in the

overlay.

 Caution: No check is made if the ellipse to be drawn partially or entirely

leaves the memory area.

 col is the gray scale to be drawn.

 The nature of drawing is specified by passing the pointer (*func)() to the

drawing function itself.

 The following macros are available:

 Call Drawing function

 ellipsed(a, c) wp_set32()
 ellipsex(a, c) wp_xor32()
 ellipseo(a) wo_set32()
 ellipsez(a) wo_xor32()

memory 8*(max{(a->dx),(a-<dy)}+1)bytes of heap memory

see also EllipseXY(), line()

Software documentation - Image processing library for VC cameras Page 69 15/12/04

Vision Components, Ettlingen

Programs for processing pixel lists

ad_calc32 address calculation for an array with x/y-coordinates
wp_list32 write video memory/access via address list
wp_set32 write video memory with constant/access via address list
wp_xor32 XOR video memory with constant/access via address list
rp_list32 read video memory/access via address list

Software documentation - Image processing library for VC cameras Page 70 15/12/04

Vision Components, Ettlingen

ad_calc32 address calculation for an array with x/y-coordinates

synopsis void ad_calc32(U32 count, I32 *xy,
 U8 *ad_list[], U8 *start, I32 pitch)

description This function calculates the corresponding memory addresses for an array

with x/y pairs.
 It is especially efficient to combine ad_calc32() with functions such as

wp_list32(), rp_list32(), wp_set32(), etc.

 The addresses are calculated in accordance with the following C program:

 for(i=0; i<count; i++)
 ad_list[i] = (U8 *)((U32)start + x[i] + y[i] * pitch);

 The prototype for the two-dimensional array xy[][2] is specified as I32

*xy. This allows various types of access (see also the examples of the
function linexy()).

 The arrays xy[][2] and ad_list[] are allowed to be identical. The values for x
and y are then replaced by the corresponding addresses.

example I32 pitch=getvar(VPITCH);
 I32 i,x,y;

U8 v_list[200];
 U8 *ad_list[200];
 U8 *start = (U8 *)getvar(DISP_START);
 I32 *xy;

 xy = (I32 *)ad_list; /* same array */

 for(i=0;i<200;i++)
 {
 x=y=i;
 xy[i][0] = x;
 xy[i][1] = y;
 v_list[i] = 255;
 }

 ad_calc32(200, xy, ad_list, start, pitch);
 wp_list32(200, ad_list, v_list);

Software documentation - Image processing library for VC cameras Page 71 15/12/04

Vision Components, Ettlingen

wp_list32 write video memory/access via address list

synopsis void wp_list32(U32 count, U8 *ad_list[], U8 v_list[])

description This function writes an array of values (v_list[]) to the video memory. The

corresponding video memory addresses are taken from the array
ad_list[].

 Both arrays should be the same size, and should contain at least count
 elements. count is the number of pixels which are written. It must be greater
 than or equal to 1.

example I32 pitch=getvar(VPITCH);
 I32 i,x,y;

U8 v_list[200];
 U8 *ad_list[200];
 U8 *start = (U8 *)getvar(DISP_START);

 for(i=0;i<200;i++)
 {
 x=y=i;
 ad_list[i] = (U8 *)((U32)start + x + y * pitch);
 v_list[i] = i;
 }

 wp_list32(200, ad_list, v_list);

 Note:
 It is more efficient to use the function ad_calc32() to calculate the

addresses, instead of the above for loop.

wp_set32 write video memory with constant/access via address list

synopsis void wp_set32(U32 count, U8 *ad_list[], I32 value)

description This function writes value to the video memory. The corresponding video

memory addresses are taken from the array ad_list[].
 This array should contain at least count elements. count is the number of
 pixels which are written. It must be greater than or equal to 1.

see also wp_list32()

Software documentation - Image processing library for VC cameras Page 72 15/12/04

Vision Components, Ettlingen

wp_xor32 XOR video memory with constant/access via address list

synopsis void wp_xor32(U32 count, U8 *ad_list[], I32 value)

description This function XORs the video memory with value and writes the
 result back to the video memory.
 The corresponding video memory addresses are taken from the array

ad_list[].
 This array should contain at least count elements.
 count is the number of pixels which are written.
 It must be greater than or equal to 1.

see also wp_list32(), wp_set32()

rp_list32 read video memory/access via address list

synopsis void rp_list32(U32 count, U8 *ad_list[], U8 v_list[])

description This function reads a number of pixels from the video memory and writes the

corresponding values to the array v_list[].
 The corresponding overlay addresses are taken from the array ad_list[].
 Both arrays should be the same size and should contain at least count

elements. count is the number of pixels which are written. It must be greater
than or equal to 1.

example I32 pitch=getvar(VPITCH);
 I32 i,x,y;

U8 v_list[200];
 U8 *ad_list[200];
 U8 *start = (U8 *)getvar(DISP_START);

 for(i=0;i<200;i++)
 {
 x=y=i;
 ad_list[i] = (U8 *)((U32)start + x + y * pitch);
 }

 rp_list32(200, ad_list, v_list);

 for(i=1; i<200; i++) print(“value: %d\n“,v_list[i]);

 Note:
 It is more efficient to use the function ad_calc32() to calculate the

addresses, instead of the above for loop.

see also wp_list32()

Software documentation - Image processing library for VC cameras Page 73 15/12/04

Vision Components, Ettlingen

Appendix A: Description of the example programs

adjust

The program „adjust“ is a simple way of adjusting VC cameras.

This program works in live mode with an overlay. In the middle of the image, a window and marker are
displayed in the overlay. Only this portion of the image is evaluated.

Two displays are visible to the left and to the right in the image. Minimum, average and maximum
brightness levels are shown in the right display. A relative focal value is shown in the left display.

When you start the program, a text message is displayed for a while and then disappears.

The library function focus() is used to create the display for focusing. The value is standardized for
mean brightness, to make the displayed value basically independent of the shutter setting or the
image’s brightness.

track - object tracking

This program implements a simple technique for tracking objects. Bright objects on dark backgrounds
are viewed, such as small bright sources. (The program can be chaged to the opposite by modifying a
define statement.)

Object tracking uses a binary image. The requires threshold value is automatically created as the
mean value of the maximum and minimum gray scales in the image window ((max+min)/2).

First, the entire image is examined. If an object is found, then the search for the picture taken next is
limited to a much smaller image window. (This can be set via define.)

Movement blur is always possible with object tracking. Therefore, the search is limited to a half image.

Software documentation - Image processing library for VC cameras Page 74 15/12/04

Vision Components, Ettlingen

puzzle - sample program for the use of image variables

This program simulates a simple puzzle, in order to illustrate how image variables are used.

For the puzzle, the image is divided into 16 (4 x 4) image areas (image variables). Simultaneously, the
sequence for the image areas is displayed in the overlay, also with image variables.

Based on the original sequence ranging from 1 to 15 (an empty field), the program copies the empty
field, creating a “random” arrangements of the “stones”.

The user must make keyboard entries to restore the original sequence. When he has done so, the
overlay is cleared and the game is over.

Through the use of image variables, it was possible to make the program very compact. In particular,
the number of parameters which work with image variables was reduced considerably. This program
also illustrates how image variables can be used to implement the overlay display.

The supplied source text is included for illustrative purposes.

flaw - flaw detection using unsharp masking

Flaw detection e.g. on a web requires contrasting a small brightness change with respect to a
relatively homogeneous surface.
With the function avg() moving average filters of arbitrary size can be selected which run at the same
speed regardless of the filter size.
This may be used for flaw detection. The original image is subtracted from the low-pass filtered. The
remaining image, which contains the flaws only, is converted into run length code.
For noise-reduction a combination of erosion and dilation is used. The resulting RLC is labelled and all
object features are printed out.

Software documentation - Image processing library for VC cameras Page 75 15/12/04

Vision Components, Ettlingen

compare - binary object comparison (backlight recommended), fast !

Many problems in machine vision can be solved using backlight, giving images which may easily be
binarised. „compare“ is a program for teach-in, manual and automatic comparison of objects. The
program adjusts for a translation of the object to be checked, but not for rotation.

This is the main menu of „compare“:

Binary Object Compare using RLC Vs. 1.0
Copyright Vision Components 1998
press ESC to abort or any other key to continue

compare: Binary Object Compare Vs. 1.0
main menu Copyright 1998

define object (1)
compare (2)
set test mode (3)
set automatic mode (4)
exit (e)

Menu item #1

You first must define the object to be compared. This is done using the following steps:
1. live image - make sure object is clearly visible in the middle of the image
2. threshold selection for binarising
3. object selection (you may select all objects including the background, all beeing displayed as white
object on black background)

Menu item #2

This is the object comparison which consists of the following steps:
1. take a picture
2. binarize image with given threshold
3. run length encoding, object labelling, calculation of object area
4. take first object with area withing +/- 10% tolerance
5. move object so that centroid fits stored sample object
6. exclusive OR revealing difference between objects
7. count number of difference pixels and display result in percent

You may change the comparison from test mode (requiring manual interaction) to automatic mode by
menu items #3 and #4

Software documentation - Image processing library for VC cameras Page 76 15/12/04

Vision Components, Ettlingen

tdr - time delay recorder using JPEG compression

tdr is an example on how to use JPEG compression. Images may be taken in sequence with a time
delay between pictures of approximately 1 sec (even fractions of a second are possible).
The images are compressed using the JPEG algorithms and stored in DRAM in a circular manner, i.e
images that have been stored first will be the first to be overwritten after some time.
The images may be retrieved in the same order they have been stored in a sequence.

This is the main menu of the function:

tdr
tdr: Time Delay Recorder Vs. 1.0
Copyright Vision Components 1998
press ESC to abort or any other key to continue

tdr: Time Delay Recorder Vs. 1.0
main menu Copyright 1998

set delay time constant (1)
set image quality (2)
set image resolution (3)
recording (4)
display (5)
exit (e)

The menu item #3 is currently not available.
Menu item #4 starts recording - this may be stopped pressing ESC and waiting some time (depending
on the time constant you have selected)
Menu item #5 will display the stored images starting with the oldest image available in memory.

dbnce - debouncing of I/O signals

This is an example on how to debounce a (noisy) input signal

lamp - controlling a lamp with output signal / PWM brightness ctrl

This is an example on how to control a lamp (or any other device) with the PLC outputs of the camera.
The lamp is switched on and off some times with some delay inbetween. Then the brightness of the
lamp may be controlled by typing „+“ (brighter) or „-“ (darker). The brightness control is performed
using pulse-width modulation (PWM)

Software documentation - Image processing library for VC cameras Page 77 15/12/04

Vision Components, Ettlingen

corr - normalized grey scale correlation, sample size = 16x16 pixels

corr is an example for the usage of the correlation functions. On program start the following message
appears:

place sample in center frame
press any key when ready

You may then position an arbitrary pattern in the center frame (64x64 pixels). As soon as you press a
key, the sample will be stored and the following message will appear.

sample stored

The program enters tracking mode, where it shows where the pattern is found in the image. Move the
sample around to get an impression of the performance.
The right bar shows the quality of the detection. The higher the marking, the better the comparison.

Software documentation - Image processing library for VC cameras Page 78 15/12/04

Vision Components, Ettlingen

Appendix B: List of library functions

Programs for processing gray images

Name Type Description

void set (image *a, int x) C Write constant to image variable
void copy(image *a, image *b) C Copy image variable
void histo(image *a, U32 hist[256]) C Histogram
void img2(image *a, image *b, image *c, C Link 2 image variables
 void (*func)(),int q)
add2(image *a, image *b, M Add two image variables
 image *c, int sh)
sub2(image *a, image *b, image *c) M Subtract two image variables (abs)
max2(image *a, image *b, image *c) M Maximum of two image variables
min2(image *a, image *b, image *c) M Minimum of two image variables

and2(image *a, image *b, image *c) M AND two image variables
or2 (image *a, image *b, image *c) M OR two image variables
subx2(image *a, image *b, M Subtract two image variables
 image *c, int offset) with offset and clipping
sub2y(image *a, image *b, image *c) M Subtract two image variables
 and binarize
void imgf(image *a, C any 3x3 operator
 image *b, void *func())
sobel(image *a, image *b) M Sobel operator
laplace(image *a, image *b) M Laplace operator
mx(image *a, image *b) M Maximum operator
mn(image *a, image *b) M Minimum operator
void ff3(image *a, image *b, C 3 x 3 filter for image variable
 static int pm c[3][3], int sh)
void ff5(image *a, image *b, C 5 x 5 filter for image variable
 static int pm c[5][5], int sh)
void ff5y(image *a, image *b, int pm *h, C 5 x 5 filter for image variable
 int pm *v, int sh) horizontal / vertical separation
void robert(image *src, image *dest) C robert’s cross operator
void projh(image *a, C Horizontal projection
 U32 result[dy])
void projv(image *a, C Vertical projection
 U32 result[dx])
void look(image *a, image *b, C Look-up table
 U32 table[256])
U32 focus(image *a, I32 sh) C focal value of an image variable
U32 mean(image *a) C mean value of an image variable
U32 variance(image *a) C variance of an image variable
void pyramidx(image *a, C general pyramid function
 image *b, void (*func)())
void pyramid(image *a, image *b) M pyramid filter for image variable
void pyr_max(image *a, image *b) M pyramid maximum for image variable
void pyr_min(image *a, image *b) M pyramid minimum for image variable
void subsample(image *a, image *b, C subsample image (image variable)
 I32 rh, I32 rv)
U32 arx(image *a, I32 thr) C number of pixels > threshold
U32 arx2(image *a, I32 th1, I32 th2) C number of pixels th1 < x < th2

Software documentation - Image processing library for VC cameras Page 79 15/12/04

Vision Components, Ettlingen

Name Type Description

void bin0(image *src, image *dest, C fast binarization of an image variable
 I32 thr, I32 bl, I32 wt, void *(*fc)())
binarize(image s, image d, M binarizing

I32 t, I32 b, w)
PaintWhite(image s, image d, M binarizing / dark pixels not changed

I32 t, I32 w)
PaintBlack(image s, image d, M binarizing / bright pixels not changed

I32 t, I32 b)
I32 avg(image *a, image *b, I32 kx, C moving average or unsharp masking
 int ky, void (*func)(), I32 v) of an image variable output centered
I32 avg2(image *a, image *b, I32 kx, C moving average or unsharp masking
 int ky, void (*func)(), I32 v) of an image variable - not centered

avgm(a, b, kx, ky) M moving average
maskx(a, b, kx, ky, offset) M subtract original + offset
masky(a, b, kx, ky) M unsharp masking + binarize

void zoom_up(image *a, image *b, C enlargement of an image variable

I32 factor)

Programs for gray scale correlation

Name Type Description

I32 vc_corr0(image *a, image *b, C small kernel correlation routine

I32 mcn, I32 mcr, I32 *x0, I32 *y0) extended search area

Programs for JPEG compression / decompression

Name Type Description

I32 fwrite_jpeg(image *a, char *path, C write image variable to JPEG
 I32 quality, U32 maxlng) image file / flash EPROM

U8 *cjpeg(image *a,I32 quality, C encode image variable
 U8 *addr, U32 maxlng, I32 (*func)()) to JPEG image file

cjpeg_d(img, qual, addr, maxlng) M write JPEG data to DRAM
cjpeg_f(img, qual, addr, maxlng) M write JPEG data to Flash Eprom
cjpeg_a(img, qual) M send JPEG ASCII data to RS232
cjpeg_b(img, qual) M send JPEG binary data to RS232

int fread_jpeg(image *a, char *path) C read JPEG image file / flash EPROM

U8 *djpeg(image *a,U8 *addr, C decode JPEG image file into
 I32 (*func)()) image variable

djpeg_d(img, addr) M read JPEG data from DRAM
djpeg_f(img, addr) M read JPEG data from flash eprom
djpeg_a(img) M read JPEG ASCII data from RS232
djpeg_b(img) M read JPEG binary data from RS232

Software documentation - Image processing library for VC cameras Page 80 15/12/04

Vision Components, Ettlingen

Programs for processing binary images in (unlabelled) run length code

Name Type Description

U16 *rlcmalloc (U32 size) M allocate RLC memory
void rlcfree (U16 *rlc) M deallocate RLC memory
U16 *rlcmk(image *a, I32 thr, C Create RLC
 U16 *rlc, I32 size)
U16 *parse_rlc(U16 *rlc) C parse RLC and output next address
I32 rlcout(image *a, U16 *rlc, C Output RLC
 U8 dark, U8 bright)

U16 *rlc_inv(U16 *rlc) C in-place inversion of RLC

U16 *rlc2(U16 *rlca, U16 *rlcb, C Link any 2 RLCs
 U16 *dest, U16 * (*func)())
rlcand(U16 *a, U16 *b, U16 *dest) M AND RLCs
rlcor(U16 *a, U16 *b, U16 *dest) M OR RLCs
rlcxor(U16 *a, U16 *b, U16 *dest) M XOR RLCs

U16 *erxdi(U16 *src, U16 *dest, C erosion / dilation of RLC / square type
 U16 *(*fc1)(), U16 *(*fc2)())
U16 *erxdi2(U16 *src, U16 *dest, C erosion / dilation of RLC / diag. type
 U16 *(*fc1)(), U16 *(*fc2)())

erode(U16 *src, U16 *dst) M RLC erosion / square type
dilate(U16 *src, U16 *dst) M RLC dilation / square type
erode2(U16 *src, U16 *dst) M RLC erosion / diamond type
dilate2(U16 *src, U16 *dst) M RLC dilation / diamond type

U16 *testrlc(U16 *rlc, I32 dx, I32 dy, C create RLC test image - chess-board
 I32 size)

U16 *rlc_mf(U16 *src, U16 *dest, C horizontal „median filter“ for RLC
 I32 col, I32 lng)

I32 fwrite_rlc(char *path, U16 *rlc) C write RLC to flash EPROM

U16 *fread_rlc(char *path, U16 *rlc) C read RLC from flash EPROM

U16 *rlc_move(U16 *src, U16 *dest, C move RLC
 I32 mx, I32 my)

U32 rlc_area(U16 *rlc, I32 color) C Calculate area in RLC
void rlc_feature(feature *f, C Determine features, unlabelled RLC
 U16 *rlc, I32 color)
U16 *sgmt(U16 *rlc, U16 *slc) C Label RLC

Software documentation - Image processing library for VC cameras Page 81 15/12/04

Vision Components, Ettlingen

Programs for processing binary images in labelled run length code

Name Type Description

I32 dispobj(image *a, U16 *rlc) C Output labelled RLC
U16 *rlc_cut(U16 *src, U16 *dest, C Cut objects from RLC
 I32 objnum)
I32 rl_area2(U16 *rlc, U32 *area, C Object areas in labelled RLC
 U32 n)
I32 rl_ftr2(U16 *rlc, ftr *f, U32 n) C Object features in labelled RLC

I32 chkrlc(U16 *rlc) C Check RLC

Software documentation - Image processing library for VC cameras Page 82 15/12/04

Vision Components, Ettlingen

Programs for processing contour code(CC)

Name Type Description

I32 contour8(image *a, I32 x0, I32 y0, C Contour following / 8-connected
 I32 dir, I32 thr, U32 lng, U32 **dst)

void cdisp(image *a, U32 *src, C display contour
 I32 col, void (*func)())

cdisp_d(a, src, col) M DRAM write
cdisp_x(a, src, col) M DRAM XOR
cdisp_o(a, src, col) M Overlay write
cdisp_z(a, src, col) M Overlay XOR

I32 ccxy(I32 *src, I32 *xy, C convert CC into xy-array

I32 *tbl, U32 maxcount)

Graphics functions

Name Type Description

void chprint(char *s, image *a, C Output a string to an image variable
 I32 cx, I32 cy)
int linexy(I32 dx, I32 dy, I32 *xy) C Basic line creation routine
void line(image *a, I32 x1, I32 y1, C Draw line
 I32 x2, I32 y2, I32 col,
 void (*func)())
lined(image *a, I32 x1, I32 y1, M Draw line in video memory
 I32 x2, I32 y2, col)
linex(image *a, I32 x1, I32 y1, M Draw line in video memory/XOR
 I32 x2, I32 y2, col)
lineo(image *a, I32 x1, I32 y1, M Draw line in overlay
 I32 x2, I32 y2)
linez(image *a, I32 x1, I32 y1, M Draw line in overlay/XOR
 I32 x2, I32 y2)
void frame(image *a, I32 col, C Draw frame
 void (*func)())
framed(image *a, I32 col) M Draw frame in video memory
framex(image *a, I32 col) M Draw frame in video memory/XOR
frameo(image *a) M Draw frame in overlay
framez(image *a) M Draw frame in overlay/XOR
void dframe(image *a, I32 col, C Draw wide frame
 void (*func)())

I32 EllipseXY(I32 a,I32 b,I32 *xyc) C basic ellipse creation program
void ellipse(image *a, I32 col, C draw ellipse
 void (*func)())
ellipsed(a, c) M draw ellipse / image memory
ellipsex(a, c) M draw ellipse / image mem. XOR
ellipseo(a) M draw ellipse / overlay
ellipsez(a) M draw ellipse / overlay XOR

Software documentation - Image processing library for VC cameras Page 83 15/12/04

Vision Components, Ettlingen

Name Type Description

dframed(image *a, I32 col) M Draw wide frame in video memory
dframex(image *a, I32 col) M Draw wide frame in vid. memory/XOR
dframeo(image *a) M Draw wide frame in overlay
dframez(image *a) M Draw wide frame in overlay/XOR
void marker(image *a, I32 col, C Draw marker
 void (*func)())
markerd(image *a, I32 col) M Draw marker in video memory
markerx(image *a, I32 col) M Draw marker in video memory/XOR
markero(image *a, I32 col) M Draw marker in overlay
markerz(image *a, I32 col) M Marker, overlay/XOR
void dmarker(image *a, I32 col, C Draw wide marker
 void (*func)())
dmarkerd(image *a, I32 col) M Draw wide marker in video memory
dmarkerx(image *a, I32 col) M Draw wide marker in video
mem./XOR
dmarkero(image *a, I32 col) M Draw wide marker in overlay
dmarkerz(image *a, I32 col) M Wide marker, overlay/XOR

Pixellist functions

Name Type Description

void ad_calc32(U32 count, I32 *xy, C Calculate an address list from a

U8 *ad_list[], U8 *start, I32 pitch) coordinate list

void rp_list32(U32 count, C Read pixel list
U8 *ad_list[], U8 *v_list)

void wp_list32(U32 count, C Write pixel list
U8 *ad_list[], U8 *v_list)

void wp_set32(U32 count, C Set pixels in pixel list to constant
U8 *ad_list[], I32 value)

void wp_xor32(U32 count, C XOR pixels in pixel list with constant
U8 *ad_list[], I32 value)

Legend: A: Assembly function C: C function M: Macro

Software documentation - Image processing library for VC cameras Page 84 15/12/04

Vision Components, Ettlingen

INDEX

A

ad_calc32 ..70, 71
add2 ...22
add2f ..22
Address lists ..11
adjust..74
and2 ...22
and2f ..22
arx ...19, 33
arx2...19, 33
avg ..19, 35
avgm ...35
avgm2 ..35

B

bin0 ...19, 34
binarize ...34
binary images ..45, 56
BitAddrAsByteAddr14
BitsAsWords ..14
BitsPerByte ..14
BitsPerWord ..14
ByteAddrAsBitAddr14
BytesPerPage..14
BytesPerWord..14

C

CC ...11, 60
ccxy ..60
cdisp ...60
chkrlc ..56, 59
chprint ..62, 63
cjpeg ...39, 40
cjpeg_a..40
cjpeg_b..40
cjpeg_d..40
cjpeg_f..40
Color images...8
compare..76
contour code ...11, 60
contour8 ...60
copy ..19, 21
corr ...78
correlation ...37, 78

D

dbnce...77
dframe ..62, 66
dframed..66
dframeo..66
dframex..66
dframez..66
dilate ..49
dilate2..50
DispGetColumns ...15
DispGetPitch..15

DispGetRows ..15
dispobj..56
djpeg...39, 43
djpeg_a..43
djpeg_b..43
djpeg_d..43
djpeg_f..43
dmarker..62, 68
dmarkerd ...68
dmarkero ...68
dmarkerx ...68
dmarkerz ...68
DRAMDisplayMalloc....................................18
DRAMOvlMalloc ...18
DRAMScreenMalloc18

E

ellipse ...62, 69
ellipsed ...69
ellipseo ...69
ellipsex ...69
EllipseXY ...62, 68
ellipsez ...69
erode ..49
erode2 ..50
erxdi..45, 49
erxdi2 ...45, 50

F

ff3 ..19, 25
ff5 ..19, 26
ff5y ..19, 27
FL_2x2_MAX_U8P_U8P31
FL_2x2_Mean_U8P_U8P31
FL_2x2_MIN_U8P_U8P31
flaw ..75
focus...19, 30
frame ..62, 66
framed ..66
frameo ..66
framex ..66
framez ..66
fread_jpeg ...39, 42
fread_rlc...45, 52
fwrite_jpeg ...39
fwrite_rlc ..45, 52

G

getchar..18
Graphics functions ..62
gray images ...19
Gray-scale images ..8

H

histo ..19, 21

Software documentation - Image processing library for VC cameras Page 85 15/12/04

Vision Components, Ettlingen

I

image variable...19
ImageAddr ...15
ImageAssign ..15
ImageGetPixel ...15
ImagePrintMembers15
ImageSetPixel ...15
img2..19, 22
imgf ...19, 23

J

JPEG ..12, 39
JPG ...12

K

kbhit ..18

L

labelled run length code10, 56
lamp ...77
laplace..23, 24
line ..62, 65
lined ..65
lineo ..65
linex ..65
linexy ..62, 64
linez ..65
logical address ..16
look ...19, 30

M

macros ...14
macros.h ...14
marker ..62, 67
markerd..67
markero..67
markerx..67
markerz..67
maskx ..35
maskx2 ..35
masky ..35
masky2 ..35
max2 ...22
max2f ..22
mean ..19, 31
min2 ...22
min2f ..22
mn..23, 25
mx..23, 24

N

NCF ..37
NCF...37, 78

O

or2 ...22
or2f ...22
OvlBitAddr...17

OvlByteAddr ..17
OvlClearAll ..17
OvlGetColumns ...17
OvlGetLogPage ...17
OvlGetPhysPage ...17
OvlGetPitch ..17
OvlGetPixel ..17
OvlGetRows ..17
OvlGetX..17
OvlGetY..17
OvlSetLogPage ...17
OvlSetPhysPage ...17
OvlSetPixel ..17

P

PaintBlack ..34
PaintWhite ..34
physical address...16
pitch ..19
pixel lists ...11, 70
projh ...19, 29
projv..19, 29
putchar..18
puzzle ..75
pyr_max..31, 32
pyr_min..31, 32
pyramid ..19, 31, 32

R

rl_area2..56, 57
rl_ftr2 ..56, 57
RLC ...9
rlc_area ..45, 53
rlc_cut...56
rlc_feature ...45, 54
rlc_inv...45, 47
rlc_mf ...45, 51
rlc_move ..45, 52
rlc2 ..45, 48
rlcand ..48
rlcfree ...45
rlcmalloc...45
rlcmk...45, 46
rlcor ..48
rlcout...45, 47
rlcxor ..48
robert ..19, 28
rp_list32 ...70, 73
run length code ...9, 45

S

ScrByteAddr ..16
ScrGetCaptPage ...16
ScrGetColumns ...15
ScrGetDispPage ...16
ScrGetLogPage ...16
ScrGetPhysPage ...16
ScrGetPitch ..15

Software documentation - Image processing library for VC cameras Page 86 15/12/04

ScrGetPixel ..16

Vision Components, Ettlingen

ScrGetRows...15
ScrGetX..16
ScrGetY..16
ScrSetDispPage ...16
ScrSetLogPage ...16
ScrSetPhysPage ...16
ScrSetPixel ..16
set ...19, 21
sgmt..45, 55
SizeOfScreen..15
SLC..10
sobel ..23, 24
sub2 ...22
sub2f ..22
sub2x ..22
sub2y ..22
subsample ...19, 33
subx2 ..22
suby2 ..22

T

tdr ...77
testrlc..45, 51
track ...74
tracking ..74, 78

V

variance ...19, 31
vc_corr0 ...37
vc_corr1 ...37, 38
vmFreeze ...14
vmLive ..14
vmLiveRefresh ...14
vmOvlFreeze ..14
vmOvlLive ...14
vmOvlLiveRefresh14
vmOvlStill ..14
vmStill..14

W

wp_list32..70, 72
wp_set32 ...70, 72
wp_xor32 ...70, 73

X

xor2...22
xor2f ..22

Z

zoom_up ...36

Software documentation - Image processing library for VC cameras Page 87 15/12/04

	Changes with respect to VCLIB2.0 release 2
	Functions working on image variables
	Functions working on runlength code
	histo(): uses U32 array instead of long array for result.
	Functions for RLC
	Basic functions
	Pixellist functions
	Functions returning long

	General comments on the image processing library
	Avoid format-filling image processing
	Use optimized programs
	Use processes which are as simple as possible
	To the extent possible, make calculations beforehand
	Use run length code for binary images
	Methods for avoiding format-filling image processing
	Areas of Interest
	Forgoing high resolution
	One dimensional instead of two-dimensional image processing

	Important image processing data structures
	Gray-scale images/image windows
	Color images
	Run length code (RLC)
	Labelled run length code (SLC)
	Address lists (pixel lists)
	Contour code (CC)
	JPEG data (JPG)

	Overview of the library functions
	Macros
	Programs for processing gray images
	Image variable
	Sample image variables
	Call

	Gray scale correlation routines
	Programs for JPEG compression / decompression
	Programs for processing binary images in (unlabelled) run le
	Programs for processing binary images in labelled run length
	Programs for processing contour code(CC)
	Graphics functions
	Programs for processing pixel lists

	Appendix A: Description of the example programs
	Appendix B: List of library functions
	INDEX

