21/02/2003

Known Bugs Technical Note

All VC-xx , VCSBC-xx , VCM-xx Cameras

This technical note covers the following Vision Components software and hardware releases:

• ADSP-21xx Family Development Tools Release 6.1
• VC/RT operating system Version 2.3x.

• VCLIB library Version 2.0 Release 2.

• All VC-xx series camera revisions, including VC-11, VC-38, VC-65, VC-65/C, VC-67. All VCSBC-xx camera revisions, including VCSBC-11, VCSBC-38. All VCM-xx camera revision, including VC-M30, VC-M40, VC-M50.

Overview

Users developing programs for VC cameras will need both the Analog Devices’ ADSP-21xx and Vision Components’ development environments. Even though both of these development environments have been available for some time there are still several known bugs associated with each environment of which developers need to be aware. The following lists have been compiled from Frequently Asked Questions (FAQ’s) by users developing and deploying real world applications on the VC cameras.

ADSP-21xx Development Tools

• Refer to the Analog Devices’ “RELEASE NOTES For the ADSP-21xx Family Development Tools Release 6.1” (P/N 83-000853-06) for the current list, status and workarounds of known bugs for the ADSP-21xx development tools.

• When installing the ADSP-21xx Family Development Tools on Windows NT, you must be logged in as‘Administrator’.

• When installing the ADSP-21xx Family Development Tools, the installation always overwrites the MFC42 DLLs. If you have installed Visual Studio Service Pack 3 prior to the ADSP tools, you will need to re-install Visual Studio Service Pack 3. [AD Reference #DSP2477]

• The ADSP-21xx compiler issues a warning: “warning: `<variable_name>' may be used uninitialized in this function” for every automatic float variable. The warning can be safely ignored. Beware of overusing the floating point operations with the AD218x CPU as the precision is limited (23-bit mantissa, 7-bit exponent for either float or double), there are numerous single-bit errors in computation, and any |quotient| close to 1.0 is computed wrong.

• The ADSP-21xx compiler sizeof() returns words, not bytes as per the ANSI C specification (A7.4.8). This is a known “feature” as the AD21xx is a word-addressed processor, and usually this is the value you really need to address DMEM. Beware of using sizeof() when dealing with DRAM addresses, pixels in images and the FLASH filesystem.

• Type promotion in the ADSP-21xx compiler is inconsistent in equations involving both int and long types. Be sure to explicitly cast all mixed-type equations to ensure correct code generation.

• The Standard C Header <limits.h> generates the following warning: “warning: decimal constant is so large that it is unsigned”. The workaround is to redefine LONG_MIN:

#define LONG_MIN (-LONG_MAX)

• switch(<long expression>) is broken in the ADSP-21xx compiler; the following is not equivalent:

long lValue;

switch((lValue & immMask)>>immShift) {

case immValue;

long lValue;

switch(lValue & immMask) {

case immValue<<immShift;

The second form works correctly.

• for() and while() when using a floating point loop variable are broken:

float fValue;

for(fValue=-2.0;fValue<2.0;fValue+=0.001) { ... }

the loop above never executes. Code the loop as follows:

float fValue;

fValue = -2.0;

do { ...; fValue += 0.001; } while(fValue < 2.0);

NOTE: a do {}while(); loop must be used, because while(){} has the same fault as for(){}.

• ADSP-21xx comparison operators fail when used with floating point values exceeding integer limits: <-INF,-32768],[32768,+INF>. Workaround by defining a macro FCMP() as follows:

#define FCMP(A,OP,B) (((A)-(B)) OP 0.0)

• Floating point assignment from a constant is broken on the first assignment:

#define FCONST -5.0

float f;

f = FCONST;

...

if(f < 5.0) //fails

Workaround: perform a native floating point operation before using the (float) variable in a conditional statement:

f = FCONST-0.01;

f += 0.01;

...

if(f < 5.0)

• The following ADSP-21xx compiler built-in functions can fail: abs(), labs(), strncpy(), strncat(), strncmp() and memcpy(). The workaround is to use the –fno-builtin switch with the g21 compiler. This option is used by the shell programs vcc.bat .

• The built-in serial port write macros save and restore register tx0. This can cause an extra character to be written to the serial port. The workaround is to use the –msmall-code option with the g21 compiler. This option is used by the shell programs vcc.bat.

• The ADSP-21xx compiler uses I-registers and M-registers for storing pointers. When these 14-bit registers are copied into other (16-bit) working registers, I-registers are copied without and M-registers with sign-extension. This may result in incorrect calculations when pointer values are used in a formula (remember, pointers are not integers!). The workaround is to mask out the 2 MSB’s (example: count = (int)(p1 - p2) &0x3fff;). See also DSP2208 and DSP2349.

• The ADSP-21xx compiler does not correctly interpret a structure aggregate initialization. E.g. image c = (image)(0L, 640, 480, 1024);. The workaround is to always initialize structure members individually and in the code [DSP0212 / TAR-212].
• The ADSP-21xx compiler requires explicit casts on some floating point constants. Eg. 0.99999999 and 0.99999998 must be specified as (float)0.99999999, etc. [DSP0979 / TAR-979]

• The ADSP-21xx compiler does not support arrays larger than 8192 elements. [DSP0230 / TAR-230]

• The operation of the ADSP-21xx C Runtime Library on floating point division fails for results near 1 or for very large numbers. E.g. –1.0/1.0 = -0.5. There is no workaround currently provided. Analog Devices describes the problem is fixed in Release 6.2 of the tools, but this release is not commercially available yet [DSP0981 / TAR-981]

• The operation of the ADSP-21xx C Runtime Library on pow() is not correct when a negative base and negative exponent are used. E.g. pow(-4.0,-2.0) gives 0.0 instead of 0.0625. The workaround is to ensure that the base or exponent are not both negative. [DSP2502 / TAR-2502]

• The operation of the ADSP-21xx C Runtime Library modf() function does not match the documentation. It gives an incorrect result for the mantissa, with the highest bit set to 1. E.g. y = modf(3.6, x);, result: y= 0.1, x = 3.

• The operation of the ADSP-21xx C Runtime Library atan() function does not match the documentation. The result sign does not always match the argument sign.

• Numerous routines which are part of the ANSI C Standard Library are not implemented in the ADSP-21xx C Runtime Library.

VC/RT Operating System

• The ADSP-21xx FFT Library cannot be used with VC cameras and VC/RT. This is because the VC/RT uses autobuffering for image acquisition and serial port I/O. Autobuffering is incompatible with the ADSP-21xx FFT Library. The workaround is to use the vcfft*() functions provided in the VCLIB Library (vclib.a).

VCLIB Library

• The VCLIB Library (version 2.0, release 1) linexy() function only returns the maximum of dx or dy addresses, instead of the actual length (sqrt(dx^2 + dy^2)) of the line addresses.

• The following VCLIB Library (version 2.0, release 1) functions do not operate correctly; mean() and sign().
Documentation Issues

• All users should obtain a copy of “RELEASE NOTES For the ADSP-21xx Family Development Tools Release 6.1” (P/N 83-000853-06) from Analog Devices.

